登陆注册
2989700000012

第12章 八仙过海,各显神通(4)

气体能溶解在固体里吗

固体物质溶解在液体里,这是最常见的溶解现象,如白糖和食盐溶解在水里。液体物质溶解在液体里,也是常见的事。白酒就是水和酒精的混合溶液,家里做菜用的醋,则是醋酸(乙酸)的水溶液。

那气体能溶解在液体里吗?能!我们平常喝的汽水和啤酒里面就溶解了不少二氧化碳气体。有些气体在水中的溶解量还很大呢!例如,在室温下,1升水能溶解400升氯化氢气体,能溶解700升氨气。

最奇异的是气体还能溶解在固体里,突出的例子是氢气在铂族元素钯里的溶解。在常温下,l体积的钯能溶解700体积以上的氢气。白金(铂)也有溶解气体的本领,1体积的白金能溶解70体积的氧。

气态、液态和固态是物质的三种主要聚集状态。上面我们谈了固体和液体物质在液体里的溶解,也谈了气体在液体和固体里的溶解。这些溶解现象,都是一种物质在另一种物质中分散的过程。现在要问,我们没有谈到的固体分散在气体和固体里,液体分散在气体和固体里,以及气体分散在气体里的情况是否存在?回答是肯定的。也就是说,总共有9种类型的分散体系,即:

气体在液体中,例如泡沫。

液体在液体中,例如白酒、牛奶。

固体在液体中,例如糖水、盐水。

气体在固体中,例如木炭。

液体在固体中,例如湿泥土。

固体在固体中,例如合金。

气体在气体中,例如空气。

液体在气体中,例如云、雾。

固体在气体中,例如烟、尘。

在这里,我们用了一个新的概念——分散体系。物质的微粒分散在另一种物质里所形成的体系,就叫做分散体系。显然,在上面列举的例子中,有些是溶液,例如糖水、盐水;有些则不是,例如牛奶。判断的方法就是根据溶液的定义和特点,看它是不是均匀、透明和稳定。这里需要指出的是,空气是溶液,空气里各种气体的质点都是分子状态的,具有高度的均匀性和稳定性。因此,空气可以说是气态溶液。

没有加热,为什么温度变了?

在一个100毫升烧杯中盛30毫升20℃(室温)的水,用小量筒量10毫升20℃的浓硫酸,慢慢地倒入水里,同时不停地搅拌。这时,用手摸一下烧杯的外壁,竟然变得烫手了,这说明硫酸倒进去后液体的温度大大升高了。

20℃的硫酸倒进20℃的水里,也没有加热,为什么温度升高了?难道浓硫酸和水混合在一起会放热吗?是的,浓硫酸溶解进水里变成稀硫酸时,要放出大量的热,正是这部分热量,使溶液的温度升高了。

浓硫酸和水混合的操作步骤,有一点特别的地方,就是一定要把浓硫酸倒进水里,决不允许把水往硫酸里倒。这是由于浓硫酸的比重比水大得多,如果把水倒进硫酸里,水就浮在上面,浓硫酸和水发生溶解反应时放出的大量的热,会使水沸腾起来,带着硫酸液滴四处飞溅,溅到皮肤上、衣服上,容易发生危险。反过来,把硫酸慢慢地倒进水里,硫酸比水重,逐渐沉到下层,由于搅拌,分散到溶液的各部分,和水发生溶解反应放出的热量,也均匀地分配到整个溶液。这样,溶液的温度是慢慢上升的,不会使水沸腾溅出。

和硫酸一样,许多物质溶于水时放出热量,例如苛性钠(氢氧化钠)和苛性钾(氢氧化钾)溶于水时就放出大量的热。50克氢氧化钾溶于水变成稀溶液时,能放出11.5千卡(1千卡=4.18千焦)的热量。

与此相反,也有许多物质溶于水时吸热,使溶液的温度降低。例如80克硝酸铵溶于水变成稀溶液时,要吸收6千卡的热量,使溶液的温度大大下降。硝酸钾溶于水时也吸收大量的热。

为什么有些物质溶于水放热,另外一些物质溶于水吸热呢?

因为溶解过程是个复杂的过程。一方面,溶质的分子或离子要通过扩散分散到溶剂分子里去,形成均匀的溶液。这个过程是需要吸收热量的。另一方面,溶质的分子或离子有一部分要和溶剂的分子发生化合反应,生成溶剂合物。如果溶剂是水,则生成水合分子或水合离子,这个过程是要放出热量的。因此,溶解时放热还是吸热,要看哪一方面占优势。如果生成溶剂合物时放出的热量超过溶质扩散时吸收的热量,整个溶解过程就是放热的。反之,溶解过程就是吸热的。

原子学说之谜

在英国的坎伯兰郡,有一所教会学校。在其中的一间教室里,讲课的竟是一位刚刚12岁的小老师。而坐在下面的学生大都同小老师的年龄差不多,有的甚至还比他大些。大概是年龄相仿的缘故,学生们没怎么把他放在眼里,小老师讲课时,随时会有人打断他的话,并提出各种问题,而且许多问题明摆着是想难住他的。对此,小老师倒是一点儿也不生气,他认真耐心地解答学生的提问,遇到不会的便说:“我回去查查书,过几天再告诉你。”时间长了,小老师与学生的关系变得越来越亲密友好,刁难他的人也少了。同时,为了解答学生的各种问题,小老师看了大量的书,查阅了许多资料,久而久之,小老师对自然科学产生了浓厚的兴趣。

这位小老师叫道耳顿,后来成为著名的化学家、物理学家,创立了伟大的原子学说。

年轻时,道耳顿喜欢气象学,他自制了许多仪器进行气象观测,并坚持每天做气象记录,整整57年没有间断。后来尽管兴趣转向了化学,但他始终没有放弃气象学的研究,而且正是这一爱好,使道耳顿思路更为开阔,能用与其他化学家不同的方式去研究物质的结构,并最终创立了原子学说。

道耳顿是怎样把气象学与原子学说联系在一起的呢?是这样的,当时为了研究气象学的需要,必须了解空气的组成和性质。道耳顿像前辈科学家玻义耳、牛顿一样,假定气体都是由微小的颗粒所组成,在这个假定的基础上,他总结出“气体分压定律”;发现了空气在压缩时温度会升高;还证明空气中水蒸气的含量随温度升高而增大。这一连串的成功给道耳顿带来了喜悦,也促使他更深入地思考。他想:“空气由微小颗粒组成”虽然只是一个假设,但由它所推演出的许多理论都被实验证明是对的。那么,这不是正好说明了假设本身是正确的吗?

道耳顿进一步想:“如果假设是正确的,它能适用于气体,是否也适用于其他的物质呢?”

恰好在不久前的1799年,法国化学家普鲁斯特宣布了物质组成的定比定律。定律说:由多种元素组成的化合物,各元素间的重量比是一定的,而且永远是整数。这个定律给了道耳顿很大启发,他认为物质中各元素间的整数比,正说明元素是由一个个独立的微粒——原子组成。道耳顿又花费了2年的时间进行实验,并取得大量的第一手数据。

1803年,道耳顿提出了原子学说,其主要内容是:化学元素均由极微小的、不可再分的原子组成;所有的物质都是由这些原子以不同的方式相化合而成的;化学反应是原子重新结合的过程。

原子学说问世以后,很快被一个又一个的事实所证明,并成功地解释了许多现象,被公认为是化学的最基本理论,是科学史上一项划时代的成就。对于原子学说的创立,道耳顿曾不止一次地说过:“它得益于我所熟悉的气象学。”

死海淹不死人的秘密

在亚洲西部,约旦王国的边界上,有一个面积1000多平方千米的内陆湖,它的名字叫做死海。

死海风光

为什么叫这么个不吉祥的名字呢?原来,在这个内陆湖里,几乎没有什么生物能够生存,沿岸草木也很稀少,一片死气沉沉的景象,所以大家就把它叫死海了。

但是,死海里的水并不像别的江河湖海那样容易吞噬生命,淹死人畜。据说,在2000年前,古罗马帝国的军队进攻耶路撒冷的时候,军队的统帅狄杜要处死几个俘虏,他让人把这些俘虏捆起来,投到死海里,想把他们淹死。不料,这些俘虏并没死海漂浮有沉到水里,一阵风浪,又把他们送回岸边来了。统帅命令把他们再投进湖里,过一会儿又都漂了回来。这位罗马统帅以为他们有神灵保佑,只好把这几个俘虏放了。

不管这个传说是否真实,死海倒的确是淹不死人的,即使不会游泳的人,也会漂浮在水面上,甚至还能读书看报呢!

死海为什么有这种奇异之处呢?关键在于死海的水里含有大量的食盐。据测定,死海的含盐量高达25%,是一般海水中食盐含量(约为3.5%)的7倍!这样高的食盐含量是不利于生物生长的,所以这个内陆湖成了死海;这样高的含盐量,使湖水的比重很大,超过了人体的比重,因此,人在湖水里不会下沉,不会游泳也能漂浮在水面上。这就是死海与众不同的“秘密”。食盐溶于水,就成了食盐的水溶液,死海里含有大量的食盐,形成了浓度较大的食盐的水溶液。上面提到的25%就是这一溶液的浓度,其含义是:在100克溶液里含有25克食盐,75克水。这种用溶质的质量占全部溶液质量的百分比表示浓度的方法,叫做质量百分比浓度,简称百分浓度。它是最常用的表示溶液浓度的方法。

显然,百分浓度和溶解度的含义是不同的。溶解度是在一定温度下,100克溶剂里所能溶解的溶质的克数,百分浓度则是在100克溶液里所含溶质的克数。溶质在溶液里的含量达到其溶解度时,溶液就成为饱和溶液了。但在实际生产、科研和日常生活中,不仅需要饱和溶液,也需要各种浓度的稀溶液和浓溶液,因此也就有许多种表示溶液浓度的方法。

空瓶生烟之谜

预先准备好两个无色“空”广口瓶,瓶子大小一样,瓶口用塞子塞着。当着观众的面拔掉两个瓶口上的塞子,马上把一个瓶子倒过来,放到另一个瓶子的上面,瓶口对好。过了一会儿,就见在瓶子里出现了白色烟雾,白烟越来越多,迅速弥漫开来,情景颇为奇异。

为什么两个“空”瓶子上下叠置起来会发生白烟呢?原来,两个瓶子里并非真的“空空如也”。下面的瓶里预先滴进了几滴浓氨水,摇荡以后,氨水均匀地粘附在瓶壁上,使瓶子看起来像空的一样。上面的瓶子里滴进了几滴浓盐酸,也经过摇荡,盐酸均匀地粘附在瓶壁上。

浓盐酸是挥发性的酸,可放出氯化氢气体;浓氨水中溶解的氨气,也容易挥发逸出。所以,当两瓶子去掉塞子,一上一下口对口地放在一起时,两种气体就会扩散开来。它们的分子碰到一起,就发生了化合反应,生成一种新的物质——氯化铵,反应中发生的白色烟雾就是氯化铵的非常细小的固体颗粒造成的。两瓶一上一下地放在一起时,必须使沾上盐酸的瓶子在上,沾上氨水的瓶子在下。这样,较重的氯化氢气体向下扩散,与氨气相通,生成氯化铵。

同类推荐
  • 我是生物知识大王(青少年科学小百科)

    我是生物知识大王(青少年科学小百科)

    科普读物从来不拒绝科学性、知识性、艺术性三者的完美统一,它强化生动性与现实感;不仅要让青少年朋友欣赏科学世界的无穷韵律,更关注技术对现实生活的改变,以及人类所面对的问题和挑战。本书的出发点正是用科学的眼光追寻青少年心中对这个已知和未知世界的热情和关注,共同了解生物的相关知识,帮助他们认识自然界的客观规律,了解人类社会,插上科学的翅膀,去探索科学的奥秘,勇攀科学的高峰。
  • 葛冰动物童话:藏獒之王

    葛冰动物童话:藏獒之王

    一场激烈的斗狗比赛,狡猾的老黑獒获得了胜利,但是小主人公却对老黑獒有着深深的仇恨!一个喇嘛出现了,在他的袖子里藏着一样神奇的东西,那到底是什么呢,让藏獒们害怕,让好多人觊觎……
  • 爱国故事(爱我中华好故事)

    爱国故事(爱我中华好故事)

    读关天培、邓世昌的故事,感叹他们为抵抗帝国主义侵略而不惜流血牺牲的壮举;读邹容、林觉民的故事,感受他们为中华民族伟大复兴而不惜抛头颅洒热血的气魄;读杨靖宇、张自忠的故事,重温他们为抵抗日本法西斯侵略而英勇献身的军人本色;读钱学森、邓稼先的故事,学习他们为发展新中国科学事业而放弃国外优越条件毅然回国的精神!
  • 圣诞老人传奇:他的生活和奇遇

    圣诞老人传奇:他的生活和奇遇

    是美国儿童文学大师弗兰克·鲍姆写给孩子们的圣诞老人的故事。圣诞老人叫什么名字?他是怎么来到我们这个世界的?谁把他抚养大?他为什么对孩子们情有独钟?他是怎么发明第一个玩具的?他在为孩子们送礼物的过程中遭遇到了怎样的困难?魔鬼们是怎样阻碍圣诞老人的?他为什么要在夜间旅行?他为什么要从烟囱爬进来?他怎么会跟驯鹿一起旅行?这些疑问都在本书的精彩讲述中一一被解答。从这本书中,你可以知道可亲可爱的圣诞老人,永远是孩子们快乐的守护神!
  • 益智妇幼的故事

    益智妇幼的故事

    童话是世界儿童文学中永不凋谢的花冠,是与我们少年儿童捉迷藏的小朋友。童话奠定了我们的人生基础,影响着我们的一生。因此应该把那些名篇珍品传给后代,陶冶后代。
热门推荐
  • 热爱祖国的故事(崇尚品德的故事)

    热爱祖国的故事(崇尚品德的故事)

    美德是“1”,任何名誉、财富等都是“0”,只有写好了前面的“1”,后面才可以有无数个“0”,否则一切都只是“0”。植根于爱的土壤,吸取古今中外伟大先贤的美德智慧,致力于帮助父母、老师和儿童,为中国培育有品格的下一代而努力。
  • 幻爱之北方姑娘

    幻爱之北方姑娘

    一座府邸,一纸画卷,一朝穿越,命运的钟声蓦然敲响。夺嫡乱世,暗潮涌动,万箭齐发,茫茫人世间谁主沉浮。她是这21世纪的新新少女,从小活在蜜罐之中,琴棋书画不会,洗衣做饭嫌累。高考前夕,一场心血来潮的旅行,让她遇到了他。他是天曌王朝的祁王殿下,从小长在阴谋之中,文武双全,容貌也是天下无双。孤傲如夜,步步为营,却不曾想会遇到她。他和她,到底是谁先动了心?本文1v1,男女主身心健康,三观正,全宠无虐,大家放心入坑啊。
  • 逢君正当时Ⅰ·密谍卷

    逢君正当时Ⅰ·密谍卷

    “扮猪吃老虎”的商贾之女VS傲娇闷骚的护国大将军,智商全程在线,情商火花四溅。谈情探案两不误,欢萌对手戏甜爆少女心!威震八方的护国大将军龙腾身负皇命,领兵驻守边郡要城,岂料接连三次,遭遇不甘嫁与残暴老头而花式逃家的商贾之女安若晨。此女油嘴滑舌、溜须拍马,“扮猪吃老虎”的蠢相下竟暗藏一颗七窍玲珑心。龙腾因欣赏安若晨的勇气与智计,将她收入军中委以管事,实施诱敌计划的同时,也放任她成为了自己心尖上的人……
  • 我,嫁给了将就

    我,嫁给了将就

    北方有佳人,绝世而独立。一顾倾人城,再顾倾人国。如有敏感心,便嫁幸福人。
  • 衣服之王:优衣库掌门人柳井正

    衣服之王:优衣库掌门人柳井正

    从祖传的一家西装店起步,逐渐成长为日本乃至全世界都关注的服装零售业巨人,这就是柳井正的优衣库王国的故事。这是一部全面、真实的优衣库成长史,该书展示了优衣库令世人瞩目的成长过程,多角度剖析了优衣库独特的商业模式、企业文化、技术研发与资本运作。阅读本书,读者能更多地了解优衣库多年来鲜为人知的成长故事,感受到柳井正睿智而朴素的商业哲学,还能从中学习思考、解决问题的方式,点燃生活工作的激情。《衣服之王:优衣库掌门人柳井正》是创业者和经营者不可多得的案头指导书,也是你不可多得的人生励志书。
  • 元泱界

    元泱界

    涵盖了网络文学、传统出版物电子版等主要电子阅读产品,全面囊括文学、社科、教育、时尚等主流内容题材,覆盖PC、移动、音频、纸质书、电子书等全阅读场景。触达数亿用户,满足全国用户阅读主流需求。
  • 活着多好呀

    活着多好呀

    备受推崇的文学家、生活家——汪曾祺散文精选集精心收录28篇美誉最多、极具代表性的散文,如四方食事、故乡的食物、我的父亲、昆明的雨等经典篇目。“活着多好呀”为汪老一句名言,代表其生活态度以及文学追求。汪老散文以写美食闻名,令人咂摸口水,跃跃欲试,于极其普通食物与饭局中找到生机趣味;写生活琐事、身边人物,幽默风趣又乐观积极,读来让人忍俊不禁,仿佛人人可爱,事事可玩味。人生实苦,他却给生活加了一层糖衣,在平常中找寻趣味与美感。
  • 豪门权妇

    豪门权妇

    “如果爱我,就请为我去死吧!我会感激你的。”十年的婚姻和付出,叶妩等来的就是这句话。君明翊,世人称颂的绝世好丈夫,亲手把妻子叶妩逼上绝路,一边亲吻着情人面颊,一边用刀捅上妻子的心脏,还那般缱绻深情的问她:“叶妩,你为什么还不肯去死?为什么不肯成全我和她的爱情?”那个温柔入骨的男人,结婚十年,却以真爱的名义,挥霍着她的家产,算计着她的家族,如此不够,还将整个叶家当成青云直上的踏脚石,以叶氏灭门当做入赘世家的见面礼,以博真爱一笑。君明翊,你怎么可以这么不要脸呢?一场蓄意车祸,将她拉回十年前的那场婚礼;婚礼红地毯尽头,叶妩笑得妩媚风华,拖着长长的裙摆,迤逦而来,迎上男人那温柔缱绻的视线,且笑且行,桀骜新生!君明翊,我的复仇来了,你——准备好了吗?这辈子,我要你身败名裂,要偌大君家灰飞烟灭,要你的情人生不如死,我要所有伤害过我的人跪在我面前,舔着我的脚趾唱征服!上辈子,豪门屈服于世家;这辈子,我叶妩要站在巅峰,不再卑微。鉴于渣男上辈子太渣,叶妩重生归来之后的第一件事,就是找个比渣男更帅、更有钱的男人!怎奈,过程太过紧张匆忙,过后才发现,貌似……自己招惹上了一个两辈子都惹不起的男人。这是一个温顺小绵羊进化成狼,报复渣男一家,顺带拐走终极BOSS的故事。PS:本文架空。
  • 绝世刀主

    绝世刀主

    刀手,江湖最底层,命如薄纸。刀客,江湖中浮沉,为名为利。刀王,江湖之上,可推波助澜。刀神,江湖传说,不在江湖,逐鹿世界。刀主,世界主宰,一界之主俯瞰众生。聂飞穿越成刀手,需要不停融合各种内功心法保命。他带领兄弟出生入死,得到魔刀,当上帮主,一步一步登顶武道巅峰,成为一界刀主。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。