登陆注册
2991300000003

第3章 热能及其成员

热能又称热量、能量等,它是生命的能源。人的每天劳务活动、体育运动、上课学习和从事其他一切活动,以及人体维持正常体温、各种生理活动都要消耗能量,就像蒸汽机需要烧煤、内燃机需要用汽油、电动机需要用电一样。人体的热能来源于每天所吃的食物,但食物中不是所有营养素都能产生热能的,只有碳水化合物、脂肪、蛋白质这三大营养素会产生热能。每克碳水化合物在体内氧化时产生的热能为16.74千焦耳(4千卡),脂肪每克为37.66千焦耳(9千卡),蛋白质每克为16.74千焦耳(4千卡)。单位换算如下:1千卡=4.184千焦耳,1千焦耳=0.239千卡。热能的需要量指的是维持身体正常生理功能及日常活动所需的能量,如低于这个数量,将对身体产生不良影响。

人体需要的能量包括基础代谢所需的能量、劳动活动所需的能量、消化食物所需的能量等三个方面。对于处在生长发育阶段的儿童、青少年,由于身体的新陈代谢特别旺盛,对热能的需要量较高。一个人如果热量摄入不足,就会使体内贮存的糖逐渐减少,到一定程度时,就将开始动用脂肪,并消耗部分蛋白质,使肌肉和内脏萎缩、消瘦、乏力、体重减轻、变得“骨瘦如柴”,各种生理功能受到严重影响,甚至危及生命。在日常生活中,有些学生经常少吃或不吃早餐,由于体内热能不足,使得血糖降低,在上第二节课以后往往产生饥饿感,自觉手足无力,上课时思想不集中。这就是吃的食物不够,能量不足所造成的,日久还会影响生长发育。

但是,如果每天吃过多的糖果、甜食等,使食物的产热量超过需要量,那么多余的能量就会转化为脂肪,积聚在皮下组织,使皮下脂肪增厚,体重超过正常范围,出现肥胖现象,并将成为成年期的高血压、糖尿病、心血管病等器质性疾病的先兆因子。

调节热的成员

比热容

比热容(specificheatcapacity)又称比热容量(specificheat),简称比热容,是单位质量物质的热容量,即是单位质量物体改变单位温度时吸收或释放的内能。通常用符号C表示。

物质的比热容与所进行的过程有关。在工程应用上常用的有定压比热容Cp、定容比热容Cv和饱和状态比热容三种,定压比热容Cp是单位质量的物质在比压不变的条件下,温度升高或下降1℃或1K所吸收或放出的能量;定容比热容Cv是单位质量的物质在比容不变的条件下,温度升高或下降1℃或1K吸收或放出的内能;饱和状态比热容是单位质量的物质在某饱和状态时,温度升高或下降1℃或1K所吸收或放出的热量。

水的比热容较大,在工农业生产和日常生活中有广泛的应用。这个应用主要考虑两个方面:①一定质量的水吸收(或放出)很多的热而自身的温度却变化不多,有利于调节气候;②一定质量的水升高(或降低)一定温度吸热(或放热)很多,有利于用水作冷却剂或取暖。

熔解热

常温常压下,1摩尔溶质溶于水时的反应热,叫做这种物质的熔解热。

晶体的熔解是粒子由规则排列转向不规则排列的过程。熔解热指单位质量晶体物质,在熔点由固相转变为液相所吸收的相变潜热。这些热量就将用来反抗分子引力做功,增加分子的势能,也就是说,这时物质所吸收的热量是破坏点阵结构所需的能量,使分子的运动状态起质的变化:从固态的分子热运动转变成液态的分子热运动,同时改变了物质的状态。所以晶体不仅有固定的熔点,而且还需要吸收一定数量的热量来实现它的熔解。由于物质不同其晶体空间点阵结构也不同,尽管各种不同物质的质量相同,在熔解时所吸收的热量却不相同。为表示晶体物质的这一特性,而引入熔解热。它表示单位质量的某种固态物质在熔点时完全熔解成同温度的液态物质所需要的热量,也等于单位质量的同种液态物质,在凝固时,在凝固点,转变为晶体所放出的热量。

如果用λ表示物质的熔解热,m表示物质的质量,Q表示熔解时所需要吸收的热量,Q=λm。

熔解热的单位是焦耳/克或焦耳/千克。测量熔点较高的物体的熔解热是比较困难的,但是对于熔点较低的物体,就可以用量热器来测定。

汽化热

汽化热指单位质量的某种物质在温度保持不变的情况下,由液相转变为气相时所吸收的相变潜热,也等于单位质量的同种气态物质在相同条件下由气相转变为液相所释放的相变潜热。不同的液体汽化热不同。同种液体在不同的温度时其汽化热亦不同。当温度升高时其汽化热减小。这是由于温度升高,液态与气态间的差别逐渐减少的缘故。

我们知道,在通常情况下,物质的存在形式有三种状态,即固态、液态和气态。在一定条件下,物质可以从一种状态转变为另一种状态。这种物态变化在物理学上称为“相变”。在我们居住的地球上,水的三态变化很容易实现,所以物态变化是人们早就熟悉的现象。

1754年冬天,德留克在巴黎做实验时,把温度计插入装有水的容器中,待水完全凝固成冰后,将容器放到微火上慢慢加热。德留克发现,开始,温度示数缓缓上升;但当冰开始融化时,虽然继续加热,温度示数却保持不变,直到冰完全熔解后,温度示数才重新缓缓上升。那么,在这段时间内冰所吸收的热量到哪里去了呢?德留克设想,热量必是以某种形式被束缚起来了。他又以适量的水和冰混合起来进行实验,得到了同样的结果,即一部分热量似乎“消失”了。这就是潜热的发现。

潜热的发现,使“热量守恒”的观念进一步得到证明;但同时也明确了,前述混合量热公式并不适用于冰水混合的情况。或者更一般地说,这个公式只在不发生物态变化的情况下才是适用的;而在包含有相变的过程中,则必须考虑潜热的吸收和释放。当然,按照现代的观点,并不存在什么“潜热”,而是在相变过程中发生了能量形式的转换,即热这种形式的能转变为物质粒子间的势能,这就是“熔解热”和“汽化热”的实质。

地底的成员——地热

地球上火山喷出的熔岩温度高达1200℃~1300℃,天然温泉的温度大多在60℃以上,有的甚至高达100℃~140℃。这说明地球是一个庞大的热库,蕴藏着巨大的热能。那么地热是从何而来的呢?要想回答这个问题,就需要从地球的构造谈起。

地球可以看做是半径约为6370千米的实心球体。它的构造就像是一个半熟的鸡蛋,主要分为3层。地球的外表相当于蛋壳,这部分叫做“地壳”,它的厚度各处很不均一,由几千米到70千米不等。地壳的下面是“中间层”,相当于鸡蛋白,也叫“地幔”,它主要是由熔融状态的岩浆构成,厚度约为2900千米。地球的内部相当于蛋黄的部分叫做“地核”,地核又分为外地核和内地核。

地球每一层的温度很不相同。从地表以下平均每下降100米,温度就升高3℃,在地热异常区,温度随深度增加更快。我国华北平原某一个钻井钻到1000米时,温度为46.8℃;钻到2100米时,温度升高到84.5℃。另一钻井,深达5000米,井底温度为180℃。根据各种资料推断,地壳底部和地幔上部的温度为1100℃~1300℃,地核为2000℃~5000℃。

著名的华卡雷瓦地热保护区地球内部的温度产生的热量是哪里来的呢?一般认为,是由于地球物质中所含的放射性元素衰变产生的热量。有人估计,在地球的历史中,地球内部由于放射性元素衰变而产生的热量,平均为每年5×1022卡。这是多么巨大的热源啊!1981年8月,在肯尼亚首都内罗毕召开了联合国新能源会议,据会议技术报告介绍,全球地热能的潜在资源相当于现在全球能源消耗总量的45万倍。地下热能的总量约为煤全部燃烧所放出热量的1.7亿倍。

由于构造原因,地球表面的热流量分布不匀,这就形成了地热异常,如果再具备盖层、储层、导热、导水等地质条件,就可以进行地热资源的开发利用。

所谓地热资源就是以水为介质把热带到地表的温泉水。我国不少地方都有温泉,著名的小汤山温泉就是其中之一。目前我们对北京地区已进行了40多年的地热资源勘探研究,用钻探手段我们可以把地下几千米的热水,即温泉带到地表,这就是地热资源开发。地热也可用于发电,即地热发电。物质的饱和状态物质的饱和状态实际上是气体或液体和其他物质之间处于动态平衡时所表现出来的一种状态。饱和状态分为饱和气体状态、饱和液体状态和饱和气液共存状态。如液体汽化时,其分子不断从液体中逸出,同时也有分子从蒸气中进入液体,当达到同一时间进出液体的分子数相等并平衡时的状态就称为液体的饱和状态。

动态平衡是建立在一定的温度及压力条件下的,如果温度或压力改变时,平衡条件就会受到破坏,经过一段时间后,又会达到新的平衡,出现新的饱和状态。

同类推荐
  • 浪基岛传奇

    浪基岛传奇

    本书故事讲述了南海边的小男孩浪儿,因为一次海难,漂流到了神秘莫测的“浪基岛”上,认识了V星系“卡尔斯怪兽王国”的公主卡斯娜……
  • 狐狸克隆了自己以后

    狐狸克隆了自己以后

    先秦寓言《买椟还珠》家喻户晓。笔者认为,写寓言当效楚商之美椟丽珠,避郑人之喜椟弃珠。文面是美椟,要新、特、趣、雅,给人审美愉悦,寓意是丽珠,应深、高、独、正,导人意诚行智。二者皆备,方出佳作。笔者当笃行之。
  • 幼儿礼仪图画故事

    幼儿礼仪图画故事

    本书是一本通过故事影响和培养孩子礼仪规范的亲子读物。内容包括甜蜜的语言、问候鸟、长颈鹿的新衣服、会飞的虾片、迪迪家的宴会和不插话的小章鱼。每一个故事都有情节、冲突、隐喻、成长,故事中不仅涉及礼仪知识,还兼有科学知识。
  • 近战勇士:冲锋枪

    近战勇士:冲锋枪

    一般来说,冲锋枪是指双手握持发射手枪弹的单兵连发机械。它是一种介于手枪和机枪之间的武器,比步枪短小轻便,便于突然开火,射速高,火力猛,适用于近战和冲锋,在200米内具有良好的杀伤效力。
  • 非常同桌别有用心的同桌计划

    非常同桌别有用心的同桌计划

    陆飞、欧阳子、李小奇……好动、好话话、好做小动作的男生们,大丽 、李小白……可爱、活泼、聪明的小女生们,他们生活学习在一起,会发生哪些好玩的事情呢?读者朋友们快来看看这本《别有用心的同桌计划》,书里收录了《别有用心的“同桌计划”》、《王钟忘成了大狮子》、《当“托”招揽顾客》等好玩的故事。
热门推荐
  • 读懂安身立业的《围炉夜话》

    读懂安身立业的《围炉夜话》

    《围炉夜话》的作者王永彬是清朝咸丰时期的人,原本是文学批评家。在生活中,这位敏锐的批评家凭自己的才华和对世间的洞悉,给后人留下《围炉夜话》。在《围炉夜话》中,他虚拟了一个冬日拥着火炉,至交好友畅谈文艺的情境,他把自己对时人、时事、文章以及文坛掌故等分段作了评议,语言亲切、自然、易读。真正让《围炉夜话》流传千古、妇孺皆知的,是其中的“安身立业”话题,它从十个方面,揭示了“立德、立功、立言”皆以“立业”为本的人生智慧,可谓最伟大的心灵成功学。
  • 来我童年旅行的舅舅

    来我童年旅行的舅舅

    我妈说,要想不被人欺负,就得努力学习,学习好了那些大个子才不会欺负你。我觉得她说得很对,就努力学习。我的成绩很好,那些大个子的确不怎么欺负我了,因为老师们都喜欢我。全天下的老师都喜欢成绩好的学生。但遗憾的是,尽管他们不欺负我了,可他们也不怎么和我玩耍。这种事情的反复出现与不断叠加,让我无比渴望着长大,我坚信只要我长大了,就会摆脱这种处处劣势的局面,变得高兴和快乐起来。就像那些我羡慕的高年级大个子们一样,我也可以随心所欲地出门远足、打鸟、游泳以及在大街小巷瞎逛,直到很晚才回家。我梦想中的生活就是那个样子的。如果那样生活了,我觉得即便有烦恼,也是一种快乐的烦恼,就像钱太多不知道该怎么花的烦恼吧。不过,众所周知,待到长大以后,就会发现长大的人也很无聊。这是后话。我现在要讲的是,我是怎么弄丢我的童年的,又是谁来弄丢的。
  • 圈养七岁小王妃

    圈养七岁小王妃

    她被亲生父亲给卖了,卖给姐姐的前男友。只可惜,她不会认人摆布,早早起来逃跑,却不幸被花盆砸中。还有没有比她更倒霉的?自此,她一个现世的小厨娘。穿越到一个未知朝代七岁半的奶娃娃,家族被人陷害,本该充军的她,被指腹为婚的夫君护着。硬是逃了厄运。可是,奶娃娃毕竟从小身子弱,没等嫁入夫家就一命呜呼了片段一某一天,嚣张跋扈的大小姐指着奶娃娃的鼻子,大骂“你就是个逆臣之女,在我面前嚣张?告诉你,赶快滚出王府,本小姐饶你不死”奶娃娃哼着曲儿,玩着手里的猫猫,口气非常平淡“管家,把侧妃轰出去”管家胆战心惊了,虽然这个是王妃,可是那个毕竟是将军之女,而且,眼前使唤他的还是个奶娃娃“王妃说的话,你没听见吗?还是你聋了?”某个男人一身素袄,站在她的身边,厉声警告片段二“皇后娘娘,请问,现在是不是该给我爹爹清白了?”某个不良的奶娃娃一脸认真的问道“本宫听不懂你说的是什么,给本宫出去”“王爷,王爷,她凶你娘子”一脸泪痕,某个奶娃娃冲进一边那个坚实的怀抱“谁敢凶你,本王给你出气,别哭了,嗯?”他抬起她的小脸,心疼的抹掉脸上的泪珠“皇后,以后见王妃如见本王,要是你再敢对她怎么样,如同对本王”阴势的眸子,冷烈的神情,让在场的人都倒抽了一口冷气片段三“王爷,王爷,不好了”门口的通报大呼小叫“讲”他慵懒的声音从卧榻传来“王妃她,她”通报欲言又止“说”他的声音冷冽三分“王妃她,打了太子妃。”“王妃受伤了没?”“禀告王爷,王妃没受伤”“传本王口谕,太子妃废了”
  • 大魔王又出手了

    大魔王又出手了

    校花对我表白了,她羞涩地站在我面前,问我:“你愿意当我男朋友吗?”我没有说话,默默从衬衣口袋里拿出了一张照片,上面是一个温婉动人的女孩子。她看了一眼,眼神便黯淡下来:“她是你女朋友吗?很漂亮,我比不上她!”说完,她伤心地跑开了。望着她黯然离去的背影,我没有说话,把照片放回衣兜,点燃手中的烟,心中想道:“哼哼,都没我女装漂亮,还想当我女朋友?”
  • 玲珑入骨

    玲珑入骨

    江湖上赫赫有名的玲珑山庄竟然一夕倾覆?眼波流转的美人儿为何突然横尸街头?名震天下的厨娘突然被捕入狱又是为哪般?傲娇的青楼头牌怎么会无缘无故消失?……而真相和命运是否会放过那些在爱恨中苦苦挣扎的人们?玲珑骰子,入骨相思。游侠意气,名士风流。斗讼诈伪,捕亡断狱。琴心剑胆,寒木春华。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 闪婚再爱:亿万总裁碗里来

    闪婚再爱:亿万总裁碗里来

    遇到的这个男人怎么好像有点不太对劲?他为什么,对自己那么好?
  • 霸君宠妻:腹黑圣女驯夫记

    霸君宠妻:腹黑圣女驯夫记

    云落桑这辈子最不幸的事情,是遇上叶落辰。云落桑这辈子最幸运的事情,是遇上叶落辰。且看风起云涌,红尘作劫,步步为妻。叶落辰:“桑儿,今生,我护你。”
  • 美人不宠

    美人不宠

    异国公主萧琬疏,凭一眼之缘爱上了晋王孟锦息,主动找到皇帝提出联姻,嫁入晋王府成为正妃。可晋王孟锦息已有心仪女子云轻裳,加上不喜被强加婚事,对萧琬疏更是冷漠相待,即便她用尽情谊,都是徒劳。心灰意冷之际,侧妃云轻裳陷萧琬疏于危难之中,萧琬疏以为自己的人生就此终结,不料晋王侍卫暗中帮忙,让一切回到最初。人依旧,心已变,萧琬疏原以为自己能够逃离命运的捉弄,却发现,无论怎么做,都是徒劳……
  • 听见南笙才能随安

    听见南笙才能随安

    落魄女孩莫南笙她一直有一个梦想,这个梦想支撑着她十八年的艰苦人生,让她在黯淡无光的人生里努力奋进。终于在她十八岁这年她终于要前往那个自己梦寐以求的地方──布拉格,她想去看看那个母亲日记本那个美丽的地方,想重回父母当初相知相爱的地方。她以为在另一个国度里,那些肮脏的一切就会离自己远去,然而并没有。她对这个向往的国度失望至极时,在异国的尤随安如天使一般出现在她的身边,让她感到丝丝温暖。尤随安是国内首屈一指的大企业集团的继承人,他潇洒帅气,家世显赫,为人高傲。他本以为自己会一辈子都会像胆小鬼一样地逃避,但她的闯入了他原本的生活,他决定要赎罪。她本以为他是自己生命中的一个过客,他们之间不会再有任何的联系,而他们的故事才刚刚开始……