博弈的均衡——纳什均衡
我们已经找到了一个策略组合,其中,各方的行动就是针对对方行动而确定的最佳对策。一旦知道对方在做什么,就没人愿意改变自己的做法。博弈论学者把这么一个结果称为“均衡”。这个概念是由普林斯顿大学数学家约翰·纳什(也就是电影《美丽心灵》的主人公)提出的,因此被称为“纳什均衡”。
纳什均衡是博弈分析中的重要概念。1950年,还是一名研究生的纳什写了一篇论文,题为《n人博弈的均衡问题》,该文只有短短一页纸,可就这短短一页纸成了博弈论的经典文献。在这篇论文中,纳什给出了博弈均衡的定义,即纳什均衡。
那么,什么是纳什均衡呢?简单说就是,一策略组合中,所有的参与者面临这样的一种情况:当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略,他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。
在囚徒困境中存在惟一的纳什均衡点,即两个囚犯均选择“招认”,这是惟一稳定的结果。
有些博弈的纳什均衡点不止一个。如下述“夫妻博弈”(或称性别之战)中有两个纳什均衡点。丈夫和妻子商量晚上的活动。丈夫喜欢看拳击,而妻子喜欢欣赏歌剧。但两人都希望在一起度过夜晚。在这个“夫妻博弈”中有两个纳什均衡点:(歌剧,歌剧),(拳击,拳击)。在有两个或两个以上纳什均衡点的博弈中,其最后结果难以预测。在“夫妻博弈”中,我们无法知道,最后结果是一同欣赏歌剧还是一起去看拳击。
纳什均衡是博弈论中的重要概念,同时也是经济学的重要概念。
诺贝尔经济学奖获得者萨缪尔森有一句幽默的话:你可以将一只鹦鹉训练成经济学家,因为它所需要学习的只有两个词:供给与需求。博弈论专家坎多瑞引申说:要成为现代经济学家,这只鹦鹉必须再多学一个词,这个词就是“纳什均衡”。由此可见纳什均衡在现代经济学中的重要性。纳什均衡不仅对经济学意义重大,对其他社会科学意义也同样重大。
纳什均衡有什么用
纳什的想法成为我们指导同时行动博弈的最后一个法则的基础。这个法则如下:走完寻找优势策略和剔除劣势策略的捷径之后,下一步就是寻找这个博弈的均衡。
我们还要解释一下这个法则。为什么一个博弈的参与者非得达到这么一个结局呢?我们可以说出好几个理由。没有一个理由本身就有足够的说服力,不过,只要把几个理由结合起来,就能形成一个有力的答案。
首先,存在避免循环推理的必要,因为循环推理帮不上忙。均衡在没完没了的“我知道他知道我知道……”的循环里是稳定不变的,这使参与者对其他人的行动的估计能保持连贯性。各方正确预计别人的行动,并且确定自己的最佳对策。
均衡策略的第二个好处出现在零和博弈中。在这种博弈里,参与者的利益严格相悖。你的对手不能通过引诱你采取一个均衡策略而得到任何好处。你已经充分考虑到他们对你正在做的事情会有什么样的最佳对策。
第三个理由是,均衡方法注重实效。要想知道梨子的滋味,就要吃一吃。我们将会利用均衡方法讨论许多博弈。希望读者来检验它对博弈结果的预测以及这种思维方式产生的行为指导方针。相信这么做会使我们的分析更有意思,比抽象地讨论均衡方法的优点更有意义。
最后,可能存在一个对均衡概念的误解,希望各位可以避免。当我们说博弈的结果是均衡,并不一定是对参与者最有利的结果,更不意味着是对整个社会作为一个整体而言最有利的结果。有利或者不利的评价永远属于另外一个问题,答案视各个案例的具体情况而各有不同。
在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能将商品卖出去,此时我们就说,该商品的供求达到了均衡。此时的价格可称之为均衡价格,产量称之为均衡产量。均衡分析是经济学中的重要分析。
那么什么是博弈论的均衡呢?所谓博弈均衡,它是一稳定的博弈结果。均衡是博弈的一结果,但不是说博弈的结果都能成为均衡。博弈的均衡是稳定的,因而是可以预测的。
纳什均衡是一最常见的均衡。它的含义是:在对方策略确定的情况下,每个参与者的策略都是最好的,此时没有人愿意先改变自己的策略。
在上面的“买——卖”的博弈中,可以解释为什么在现实中讨价还价后买卖能做成的原因,因为这对双方来说都是最优选择。同时在“买——卖”博弈中,其均衡对双方来说是全局最优的。
警察与小偷
是不是所有的博弈均存在纳什均衡点呢?不一定存在纯策略纳什均衡点——所谓纯策略是指参与者在他的策略空间中选取惟一确定的策略。但至少存在一个混合策略均衡点——所谓混合策略是指参与者采取的不是惟一的策略,而是其策略空间上的概率分布。这就是纳什于1950年证明了的纳什定理。我们下面将在“警察与小偷”的博弈中给出混合策略的说明。
在西部片里,我们常能看到这样的故事:某个小镇上只有一名警察,他要负责整个镇的治安。现在我们假定,小镇的一头有一家酒馆,另一头有一家银行。再假定该地有一个小偷,要实施偷盗。因为分身乏术,警察一次只能在一个地方巡逻;而小偷也只能去一个地方。假定银行需要保护的财产价格为2万元,酒馆的财产价格为1万元。若警察在某地进行巡逻,而小偷也选择了去该地,就会被警察抓住;若警察没有巡逻的地方而小偷去了,则小偷偷盗成功。警察怎么巡逻才能使效果最好?
一个明显的做法是,警察对银行进行巡逻,这样,警察可以保住2万元的财产不被偷窃。可是如此,假如小偷去了酒馆,偷窃一定成功。这种做法是警察的最好做法吗?有没有对这种策略改进的措施?
这个博弈没有纯策略纳什均衡点,而有混合策略均衡点。这个混合策略均衡点下的策略选择是每个参与者的最优(混合)策略选择。
对于这个例子,对于警察的一个最好的做法是,警察抽签决定去银行还是酒馆。因为银行的价值是酒馆的两倍,所以用两个签代表银行,比如如果抽到1、2号签去银行,抽到3号签去酒馆。这样警察有2/3的机会去银行进行巡逻,1/3的机会去酒馆。而小偷的最优选择是:以同样抽签的办法决定去银行还是去酒馆偷盗,只是抽到1、2号签去酒馆,抽到3号签去银行,那么,小偷有1/3的机会去银行,2/3的机会去酒馆。