登陆注册
2052200000029

第29章 综合法(1)

所谓综合法,就是综合各种方法(包括前述各种方法以外的方法)去解决某些问题。事实上,许多问题都要运用几种不同的方法才能解决。例如分析法是最常用的方法,几乎所有的问题都要用到;递推和倒推法也经常是相辅相成的,有时甚至在同一题中,两种方法一起使用,分析的时候用倒推法,解题的时候用递推法;排除法的应用,往往是以假设法为前提的,假设出一个条件之后,加以确定和排除,才能得到正确的答案等。综合运用这些方法,才是解决逻辑问题的关键。

解决逻辑问题的原则是“化繁为简,思维至上,以不变应万变”。不管问题怎么千变万化,但是万变不离其宗,其特点和解题思路都逃不脱我们所归类总结的内容。

方法示范:

例一:送邮件【中级】

一列装有邮件的火车将要到达车站,邮局派出一辆汽车去车站取。可是火车提前到站了,所以车站就派人骑摩托车往邮局送。摩托车走了半个小时迎面遇到了邮局来取邮件的汽车,汽车司机接过邮件,一刻也不耽误地掉头回去,结果比平时早了20分钟回到邮局。问这天的火车比平时早到了多长时间?

汽车司机提前了20分钟到邮局,也就是说他从遇到摩托车手到火车站这段路程来回需要20分钟。所以从相遇时到抵达火车站,汽车司机需要10分钟。也就是说,按照以往的时间,再过10分钟火车应该到站,但是此时火车已经到站30分钟了,也就是摩托车手走这段路的时间。所以这一天火车比以前提前了40分钟到站。

例二:辨别重球【高级】

假设你有8个球,其中一个略微重一些,但是找出这个球的唯一方法是将两个球放在天平上对比。最少要称多少次才能找出这个较重的球?

两次。

把8个球分成3、3、2三组,把3个球和3个球分别放在天平的两端。如果天平平衡,那么把剩下的两个球放在天平上,天平向哪边倾斜,那个球就是略重的;如果天平偏向一方,就把重的那一方的3个球中的两个放在天平上,这时如果天平倾斜,重的就是重的球,不倾斜,剩下的那个球就是要找的。

特别要指出的,我们归纳的这九种解题方法及其解题思路都是分解动作,目的是为了训练大家的解题感觉,如果感觉已形成并已熟练掌握了,那么在正式解题时就应一气呵成,而不用拘泥于具体是哪种思路、哪种方法了。其实逻辑题的推理过程最重要,要从繁复的叙述中看清事物间的推理关系。推理过程清楚了,什么题型都好说,很多题型是相通的。1.一笔画图【初级】

古希腊的很多建筑上都有一种特殊的符号,它是由圆和三角形组成的(如下图)。

这个图可以一笔画出,任何线条都不重复。你知道怎么画吗?

2.发现宝石【初级】

在下面的表格中,隐藏了若干颗宝石,其数量如同表格边的数字所揭示。此外,在某些方格中标记了箭头的符号,这些地方没有宝石。而箭头所指的方向藏有宝石,当然在这个方向藏着的宝石可能不止一颗。看你能找到多少颗宝石吧?

111312131→↓3→1→1↑→1↓2←3→1→3.两数之差的三角形【初级】

请把所给的数字根据两条简单的规则插入到三角形状的阵列中:一条规则是每个数字只能出现一次,另一条是每个数字必须是它正上方两个数字之差。比如,如果相邻两个数分别是6和4,那么它们下面的数字就必须是2。

最小的三角形已经填了从1到3的数字。你能否将接下去的三角形分别填上从1到6、1到10和1到15的数字?

4.智力测验【初级】

这个智力测验已有50年以上的历史,据说比尔·盖茨(微软公司创办人)也做过这份测验,而且只得到3分。希望大家也能试试看,再和朋友们对照一下成绩。

1.英国有没有七月四日(美国独立纪念日)?

A.有B.没有

2.一个人一辈子有几个生日?

A.1B.2C.3-10个D.10个以上E.不一定

3.大月有31天,小月有30天,那么一年中几个月有28天?

A.1B.2C.3D.6E.9F.12

4.棒球比赛每一局有几人出局?

A.2B.3C.6D.8

5.在美国加州,一个男人可否和他的寡妇姊姊或妹妹合法结婚?

A.可以B.不可以

6.30除以1/2再加上10等于多少?

A.10B.35C.50D.70E.90

7.桌上有3个苹果,你拿起2个,你还有几个?

A.1B.2C.3

8.医生给你3个药丸,要你每30分钟吃1个,这些药丸多久后会被吃完?

A.20B.40C.60D.90

9.农夫有17只羊,除了9只以外都病死了,农夫还剩几只羊?

A.3B.5C.7D.8E.9F.17

10.摩西将每种动物选了几只带上方舟?

A.3B.2C.1D.0

11.一打每张叁元的邮票共有几张?

A.1B.3C.6D.9E.12

5.寻宝比赛【初级】

某电视台组织了一次寻宝比赛,寻找藏在Z城的宝物。所有的人先在A城集合,然后参赛者们分头去除了A和Z城以外的其他9个城镇寻找线索,每一个城镇都有一条线索,只有把这些线索集中在一起,才会知道那件宝物藏在Z城的什么位置。而且有个要求,就是每个城镇只能去一次,不能重复。只有巧妙地安排自己的路线,才能顺利地从A城到达Z城。下图是11个城镇的分布图,城镇与城镇之间只有唯一的一条道路相连。

请问该怎么走呢?

6.绳圈【初级】

下图中画的是一根完整的绳子,如果我现在依图中所标示的方向拉下这条绳子的两端,绳子不会打结,但是会缠住其中的一颗钉子。会是哪一颗钉子呢?

7.没有时间学习【初级】

妞妞是个聪明的孩子,但是却非常不喜欢学习。妈妈每天都要催促妞妞抓紧时间学习,妞妞却辩解说她很忙,几乎没有时间学习。妈妈很疑惑,问她都在忙什么?妞妞就给妈妈列出这样一个表:

1.睡觉(每天8小时),合122天;

2.双休日2×52=104天;

3.暑假60天;

4.吃饭(每天3小时),合45天;

5.娱乐(每天2小时),合30天。

总计:122+104+60+45+30=361天。

一年中,只有4天的时间可以学习,这还没有把生病的时间算进去,所以她根本没有时间学习。妈妈看她这样计算觉得也有道理。事实上,妞妞是做了手脚。你发现妞妞在哪里做了手脚吗?

8.分放宝石【初级】

从前有一个外国使者,想难为一下年轻的王子,他拿出了30颗硕大的宝石和蓝色、红色两个盒子。使者对王子说:“我们来做一个游戏,在开始的时候,要让你蒙上眼睛,我把这30颗宝石分别往这两个盒子里面放,如果我要往红盒子里放,每次放一颗;如果我往蓝盒子里放,就每次放两颗。我每放一次,我旁边的同伴就会拍一次掌,当我放完后,你要说出有多少颗宝石在红盒子里。如果猜对的话,这些宝石就全是你的,如果猜错了,你要给我和这些宝石相等价值的宝物。可以吗?”王子同意了。于是按要求去做,王子听到21次拍掌。他很快就说出了红盒子里宝石的数量,结果他赢得了宝石。请问,红盒子里有多少颗宝石?

9.猜数量的游戏【初级】

4个人在一起玩游戏,这个游戏的规则是这样的:有一个人变换着把6根火柴棒握在手中,然后让另外的人猜测他左手中可能握的火柴棒的根数。

甲猜测说:“你手中的火柴棒不是1根就是2根。”

乙说:“你手中的火柴棒不是3根。”

丙说:“你手中的火柴棒不会是4根,也不会是5根或者6根。”

结果他们中只有一个人的猜测是正确的,那么,那个人手中的火柴棒到底有多少根呢?

10.偶数路径【初级】

从标有“起点”的圆到标有“终点”的圆只有一条路允许走,这条路要求走过偶数个路段。你能找出可行的最短路径吗?

11.印刷电路【初级】

印刷电路是二维的图。图中的交点能实现电子操作,而电线将电信号从一处传送到另一处。如果电线相交,就会发生短路,装置也将失灵。

你能连接这块电路板上标有相同数字的5对电路,而不让任何电线相交吗?连接的电线必须都在灰色区域内。

12.坐座位【初级】

A~F六个人围着一个六边形的桌子而坐(如下图)。图中已经填好了A和B的位置,请根据下面的提示依次把其他的空位填满。

(1)A坐在B右手边隔一个空位的位子;

(2)C坐在D的正对面;

(3)E坐在F左手边隔一个空位的位子。

那么,如果F不是坐在D的隔壁,A的右边会是谁呢?

13.神奇数表【初级】

有如下图所示的5张表,你在心里想一个数,这个数不能超过31。并请你指出,你想的这个数,都在哪个表中有,那么我就会知道你想的数是多少。

这个表是怎么制出来的呢?

14.二等分【初级】

你能将下面图形分成大小、外形完全相同的两个小图形吗?

15.射击比赛【初级】

奥运会射击比赛中,甲、乙、丙3名运动员各打了4发子弹,全部中靶,其命中情况如下:

(1)每人的4发子弹所命中的环数各不相同;

(2)每人的4发子弹所命中的总环数均为17环;

(3)乙有两发命中的环数分别与甲其中两发一样,乙另两发命中的环数与丙其中两发一样;

(4)甲与丙只有一发环数相同;

(5)每人每发子弹的最好成绩不超过7环。

问甲与丙命中的相同环数是几环?

16.滚动的硬币【初级】

如图,带箭头的硬币可以沿7个固定的硬币滚动。当它回到出发点时,这个硬币滚了几圈?箭头将朝哪个方向?

17.卖酒【中级】

超市里有两桶满的白酒,各是50斤。一天,来了两个顾客,分别带来了一个可以装5斤和一个可以装4斤酒的瓶子。他们每人只要买2斤酒。如果只用这四个容器,你可以给他们两个的瓶子里各倒入2斤的酒吗?

18.七边形幻方【中级】

请把1~14填入圆圈,使七边形的每条边上3个数之和都为26。

19.不同国家人的交流【中级】

联合国召开会议,在会议厅里,4位代表围桌而坐,侃侃而谈。他们用了中、英、法、日4种语言。现在已知:

(1)甲、乙、丙各会两种语言,丁只会一种语言;

(2)有一种语言4人中有3人都会;

(3)甲会日语,丁不会日语,乙不会英语;

(4)甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;

(5)没有人既会日语,又会法语。

请问:甲、乙、丙、丁各会什么语言?

20.谁是第一名【中级】

阿伦、阿恩和阿林三个同学中,有一人获得了第一名。

阿伦如实地说:

(1)如果我没有得到第一名,我的数学成绩就没有满分;

(2)如果我得了第一名,我的语文成绩就是满分。

阿恩如实地说:

(3)如果我没有得到第一名,我的语文成绩就不是满分;

(4)如果我得了第一名,我的数学成绩就是满分。

阿林如实地说:

(5)如果我没有得到第一名,我的数学成绩就没有满分;

(6)如果我得了第一名,我的数学成绩就是满分。

同时:

(7)那位获得第一名的同学是唯一某一门课程考满分的人;

(8)那位获得第一名的同学也是唯一某一门课程没有考满分的人。

这三人中谁获得了第一名?

21.不会输的游戏【中级】

有一种赌博游戏叫做“15点”。规则很简单,桌面上画着三行三列9个方格,上面标有1~9九个数字。庄家和参赌者轮流把硬币放在1到9这九个数字上,谁先放都一样。谁首先把加起来为15的3个不同数字盖住,那么桌上的钱就全数归他。

我们先看一下游戏的过程:一位参赌者先放,他把硬币放在7上,因为7被盖住了,其他人就不可再放了。其他一些数字也是如此。庄家把硬币放在8上。参赌者把硬币放在2上,这样他以为下一轮再用一枚硬币放在6上就可以赢了。但庄家却看出了他的企图,把自己的硬币放在6上,堵住了参赌者的路。现在,他只要在下一轮把硬币放在1上就可获胜了。参赌者看到这一威胁,便把硬币放在1上。庄家笑嘻嘻地把硬币放到了4上。参赌者看到他下次放到5上便可赢了,就不得不再次堵住他的路,把一枚硬币放在5上。但是庄家却把硬币放在了3上,因为8+4+3=15,所以他赢了。可怜的参赌者输掉了这4枚硬币。

原来,只要知道了其中的秘密,庄家是绝对不会输一盘的。你知道是如何做到的吗?

22.寻宝【中级】

这是一幅寻宝地图。寻宝者在每一个方格只能停留一次,但通过的次数不限;到每一方格后,下一步必须遵守其箭头的方位和跨度指示行走(如↓4表示向下走4步,4表示沿对角线向右上走4步);有王冠的方格为终点。请问四个角哪里是寻宝的起点呢?在寻宝过程中,有些方格始终没有停留,这些方格会呈现出一个两位数,是什么数呢?

23.钟表不慢了【中级】

明明家里的钟一天慢一小时。有一天,明明的同学看到这座钟,他说:“接下来的几天它都不会再慢了。”明明在这段时间并没有去碰这座钟,这是怎么一回事?

24.带轴的幻方【中级】

每个数字板上都装有一根轴。每块板都可以沿这根轴翻转,遮住一些数字而露出另一些数字。每块板的反面都印着和正面一样大小的数字,而每块板的下面还压着一个是其两倍大小的数字。

请翻转三块板,使每行、每列和每条主对角线上的数字之和都等于34。

25.洗牌【中级】

有一副牌52张,编号1到52。初始状态是1到52自下而上。现在开始洗牌。假如我洗牌技术一流,每次都均分成26/26两手,而且每次洗下来都左右各一张相间而下。这样,第一次洗后的状态是:1,27,2,28,3,29,……26,52。

问:洗几次后又回到初始状态1,2,3,4,……51,52?

26.美丽七连环【中级】

在下图中的7个相交圆环上填入1~19的所有数字,使每个圆上的6个数字之和为60。

27.取火柴【中级】

有3000根火柴,甲、乙两人轮流取火柴。甲先取,每次只允许取出1根或2的K次方(K为自然数)根火柴,谁取得最后一根火柴就谁胜。这个游戏最终谁将获胜?为什么?

28.红色的还是白色的【高级】

有一群人围坐在一起,为了便于分析,假定只有4人(这与人数多少无关,可作同样分析)。每个人头戴一顶帽子,帽子有红色和白色两种,每个人看不到自己帽子的颜色,但能看到别人帽子的颜色。因此,此时他不能判定出自己头上的帽子的颜色。

为了分析的方便,我们假定这4个人均戴的是红色的帽子。这时候,一个局外人来到他们的群体当中,对他们说:“你们其中至少一位头戴的是红色的帽子。”当他说了这句话后,他问:“你们知道你们头上的帽子的颜色吗?”4个人都说:“不知道。”这个局外人第二次问:“你们知道你们头上的帽子的颜色吗?”4个人又都说:“不知道。”局外人第三次问:“你们知道你们头上的帽子的颜色吗?”4个人又说:“不知道。”局外人又问第四次:“你们知道你们头上的帽子的颜色吗?”这时4个人均说:“知道了!”

你知道这是为什么吗?

29.精灵的语言【高级】

同类推荐
  • 老祖母的厨房

    老祖母的厨房

    实的怀念与虚幻的构想,就在这间老祖母的厨房里展开,在这里,有我丢失的蓝花瓷碗,有坚守的爱,有不倦的等待,有一段神秘的、古老的故事轻手轻脚地徐徐走来。
  • 做一个了不起的小干部

    做一个了不起的小干部

    少先队小干部是少先队大、中、小队各级组织的核心与骨干,是辅导员和少先队员之间的桥梁和纽带,在少先队活动中充当着“领头羊”的角色。小干部们要带领队员做少先队的主人,就像排头领飞的大雁那样,要以身作则,处处起模范带头作用。少先队员们争取当干部不是为了“当官”,也不是为了显示对大家“指手划脚”的威风,而是要为同学们服务,同时锻炼自己,只有树立这样的信念,才有可能得到大家的拥护,成为一名了不起的小干部。
  • 背包为家

    背包为家

    《背包为家》是儿童文学作家张国龙创作的一本随笔美文集,分为背包回家、遥想他乡、天涯情旅三卷,其中所选文章或抒发少小离家的乡愁客思,或描写各地行旅的风土人情,或追忆梦里故乡的山水人事,无不充满了浓浓的人文情怀,对于青少年读者开阔眼界,感悟生活及文学极有助益。书中,作者用徐缓的笔触讲述自己在各种各样人生旅途中的见闻感想。作者看来,走过了东西南北,经历了初夏秋冬,作为匆匆过客的我们,如果没有真挚和全情的投入,再好的风景都似一夜昙花,转眼便是云烟。故而,作者将对大自然及自由思想生活的向往,对生活的热爱倾注到笔下的文字中,青少年读者可以跟随这些清新优美的文字对生命有更加深刻的领悟。
  • 防灾避难与危机处理

    防灾避难与危机处理

    处于青少年时期的学生虽然相比以往安全意识有了提高,个人处理问题的能力也是有所增强,但仍不够,本书本着提高青少年自我保护能力以及处理突发事件的能力为目的,搜集了大量有关防灾避难与危机处理的短文,包括《违规骑车危险多》、《提防马路骗子》等。
  • 中国未解之谜全知道

    中国未解之谜全知道

    《中国未解之谜全知道》综合了大量历史、地理、科研文献资料,以全面、全新、探索的视角,从帝王、文臣、武将、文人、红颜、政治、经济、文化等近20个方面,甄选600多个重大的历史事件,经由深刻精确的分析,力求达到去伪存真,求得事实的真相,解读历史的规则。
热门推荐
  • 这样的女人最幸福

    这样的女人最幸福

    感觉会让一个女人具有别样的风情,在女人的感觉世界里包含着善良、明智、浪漫以及对他人的喜厌。跟着感觉走的女人,就有如一缕淡淡的撩人心神的馨香,任谁从她身边走过,都忍不住驻足欣赏;女人的感觉也会让女人在幸福来临的时刻,紧紧抓住它的手,从而锻造出属于自己的幸福人生。做一个跟着感觉走的女人,幸福是那么伸手可及。
  • 萌宠王妃

    萌宠王妃

    顾珊珊认为这辈子她魂穿在一只小狐狸身上,这一世只一眨眼一闭眼间就过了。可谁知遇上了一个恶魔王爷,成为了他的宠物,她才发现她这悲催的一生根本就看不到尽头。罢、罢、罢,既来之,则安之。当只萌宠又怎么了?吃饱了睡,睡饱了吃,这日子过得倒也逍遥自在。慕容璃一身杀戮一手血腥这辈子他想也许就这么一直孤单的走下去了。可是当他遇上了这世间一双最纯净的紫眸,天性的强烈占有欲,誓把她牢牢掌控在自己的手中。见她可爱模样,他欺负她、威胁她,看着她一天天的成长。骤然惊醒,心却是点点滴滴遗落在了她的身上。只是人兽两隔,看来他得使些手段,让这只懒惰的小东西早些修成人型才成。从此一人一兽,窘事不断。精彩小剧场“王爷,不好了。”侍卫慌张来报。“何事?”慕容璃声音清冷微挑俊眉。“小银狐,把老夫人心爱的鹦鹉给拔了毛。”侍卫惶恐。“那鸟死了吗?”“没死。”“那叫绣枋给它绣件衣裳。”命令一下,侍卫愣了,绣女傻了。不日,府中暴走一只穿着衣裳的秃鸟,后面还紧追着一只银色小白狐。
  • 快穿之龙套她开了挂

    快穿之龙套她开了挂

    做为一名开挂的龙套,凌漆漆无所不能,但,她就是不会去抢男主。每日装13打脸是日常,但一会让她当校霸,一会儿让她当小三儿,一会儿又让她当后妈是怎么一肥事?龙套就没有节操了吗,真的是...那啥,帅哥你先放开我的大腿好吗,我的腿可不是镀金的,要抱金大腿换人去。某日,她被问到,她有什么是不会的?她转动了一下眼珠子,回应,“不会喜欢男主。”某人听后,甚是欢喜,打赏了那人豪宅一栋,豪车一辆,好工作一枚......夫人这回答,甚得我心啊!
  • 无明慧经禅师语录

    无明慧经禅师语录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 斗罗大陆之命运预言

    斗罗大陆之命运预言

    天斗分裂,灵魂出世!斗罗危机,日月侵袭!可怕的预言,史莱克七怪如何面对?他们能否带领史莱克学院和斗罗三国,渡过危机?日月大陆碰撞,日月帝国的第一次袭击!天斗帝国的分裂,日月帝国的阴谋,史莱克七怪能否破解这个近乎无解的局?
  • 冷兵时代

    冷兵时代

    冷兵盛行的时代,刀光剑影的国度。一群少年在江湖闯荡,书写属于冷兵的凄美传说。欢迎来到,冷兵时代!
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 哑女与真心话

    哑女与真心话

    在开庭前,站在墙角的哑女看到他们聚集在了大厅中央那张方桌的四周。七岁的男孩豆豆被他的姨娘小鹤搂着,他皱着眉头。仿佛心头正压着一块从未有过的沉重石块,他不知道今天过后,将如何面对此刻作为原告和被告的这些亲人。他正逐一地将目光望向亲人们,似乎像是在乞求和挽留什么。他正对面是一脸疲惫的爸爸,爸爸的右侧是瞎子周阿炳和他的姐姐周颖,左侧是一位陌生人。开庭还有段时间,哑女看到豆豆摸了摸眼角,又摇着小鹤的胳膊说:“小鹤姨娘,你能不能和爸爸、叔叔、阿姨陪我一起再玩一次‘真心话大冒险’,我们已经好久不玩了。
  • 世界尽头等到你

    世界尽头等到你

    八岁的乔萝因母亲的再婚而进入新家庭,但因与继父的女儿乔欢不合,间接导致乔欢受伤,母亲只好将她送去江南小镇青阖与外婆生活。在那段孤单的岁月里,乔萝遇见了古镇少年秋白,然而来之不易的年少缘份,却在秋白不告而别嘎然而止。在等待秋白的岁月里,少年江宸来到了乔萝身边,他陪她一起长大,一起走过青春无双,却终究抵不过年少岁月的细碎流光……
  • 英雄联盟之最强外挂

    英雄联盟之最强外挂

    特殊的英雄联盟界面,可以往返于现实和异时空之间,在未知的异时空,兑换天赋可以强化自身的速度与力量?感知英雄本体,可以获得部分英雄记忆和能力?回到现实,黄金段位的萧决,却有王者巅峰的操作,什么电一王者,职业选手,世界第一,在开了外挂的萧决面前,全都弱爆了![这里有精彩的游戏技巧,热血的电竞,虚拟的网游,也有感人至深的爱恨情仇。喜欢本书的小伙伴可以加群260455892]