登陆注册
2620100000003

第3章

此法的缺点是:先将代表复合数的齿全掰掉了。因为素数的存在是微弱地依附着较小素数及其倍数的复合数,而这点儿微弱的痕迹也给掰掉了。而这个问题,又不能从概率的办法解决,因为素数不是正态分析,而是一个确定的问题。所以他们就将x确定为一定值,再每两个齿一错位。这样,一个用有限问题企图解决无限问题,当然是极其困难的。尽管如此,仍有一些人在艰苦地攀登。所以后来,他们把大于某一个很大的数(例如k0=e49c)偶数,叫做大偶数,再将任一大偶数N(N>K0)写成自然数N1与N2之和,即N=N1+N2。而N1与N2里素因数这个数,分别不多于s与t个。故简记为(s,t),或写成带引号的加法:“s+t”,此时N1与N2可以叫做殆(接近)素数,然后将s与t值逐步缩小。如果一旦将s,t均计算到1,那时再来证明5×108Ne49 c时,(1,1)成立。这样,(1,1)问题即解决了。但是,至今没有最后解决。现将当前世界取得的名次结果,列表如下:

(s,t)年代结果获得者国别

(9,9)1920布龙挪威

(7,7)1924雷特马赫德

(6,6)1932埃司特曼英

(5,7),(4,9)1937蕾西意

(3,15),(2,366)1937蕾西

(5,5)1938布赫夕太勒前苏联

(4,4)1940布赫夕太勒

(1,C很大)1948瑞尼匈

(3,4)1956王元中

(3,3),(2,3)1957王元

(1,5)1962潘承洞中

巴尔巴恩前苏联

(1,4)1962王元

(1,4)1963潘承洞

巴尔巴恩

(1,3)1963布赫夕太勒

(小)维诺格拉朵夫前苏联

波皮里意

(1,2)1973陈景润中

按照华林原来的猜测,g(2)=4,g(3)=9,g(4)=19。一般地猜测:

g(k)=2k+〔(x)k〕-2(1)

其中〔x〕表示x的整数部分。

经过许多数学家的努力,除去k=4外,(1)已被证明,其中g(5)=37是我国科学家陈景润于1964年证明的。

对于k=4,目前已经证明:

19g(4)21,

并且在n10310或n>101409时,n可以表示为19个4次方的和。这已经接近于预期的目标g(4)=19了。

人们还发现,当自然数充分大时,可以将它表为G(k)个K次幂的和,这里G(k)g(k)。实际上,G(k)比g(k)小得多(当k大的时候)。目前仅仅知道G(2)=4,G(4)=19。对G(k)进行估计是一个很艰难的问题。

回数猜想

一提到李白,人们都知道这是我国唐代的大诗人,如果把“李白”两个字颠倒一下,变成“白李”,这也可以是一个人的名字,此人姓白名李。像这样正着念、反着念都有意义的语言叫做回文,比如“狗咬狼”、“天和地”、“玲玲爱毛毛”,一般说来,回文是以字为单位的,也可以以词为单位写回文,回文与数学里的对称非常相似。

如果一个数,从左右两个方向来读都一样,就叫它为回文数,比如101,32123,9999等都是回文数。

数学里有个有名的“回数猜想”,至今没有解决,取一个任意的十进制数,把它倒过来,并将这两个数相加,然后把这个和数再倒过来,与原来的和数相加,重复这个过程直到获得一个回文数为止。

例如68,只要按上面介绍的方法,三步就可以得回文数1111。

68+86154+451605+5061111

“回数猜想”是说:不论开始时采用什么数,在经过有限步骤之后,一定可以得到一个回文数。

还没有人能确定这个猜想是对的还是错的,196这个三位数可能成为说明“回数猜想”不成立的反例,因为用电子计算机对这个数进行了几十万步计算,仍没有获得回文数,但是也没有人能证明这个数永远产生不了回文数。

数学家对同时是质数的回文数进行了研究,数学家相信回文质数有无穷多个,但是还没有人能证明这种想法是对的。

数学家还猜想有无穷个回文质数时,比如30103和30203,它们的特点是,中间的数字是连续的,而其他数字都是相等的。除11外必须有奇数个数字,因为每个有偶数个数字的回文数,必然是11的倍数,所以它不是质数,比如125521是一个有6位数字的回文数,按着判断能被11整除的方法:它的所有偶数位数字之和与所有奇数位数字之和的差是11的倍数,那么这个数就能被11整除,125521的偶数位数字是1,5,2;而奇数位数字是2,5,1,它们和的差是(1+5+2)-(2+5+1)=0,是11的倍数,所以125521可以被11整除,且125521÷11=11411。

因而125521不是质数。

在回文数中平方数是非常多的,比如,

121=112,

12321=1112,

1234321=11112,

……

12345678987654321=1111111112,

你随意找一些回文数,平方数所占的比例比较大。

立方数也有类似情况,比如,1331=113,1367631=1113

这么有趣的回文数,至今还存在着许多不解之谜。

冰雹猜想

30多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

比如,取自然数N=6,按角谷静的作法有:6÷2=3,3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1,最后得1。

找个大数试试,取N=16384。

16384÷2=8192,8192÷2=4096,4096÷2=2048,2048÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!选数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

这一串串数难道一点规律也没有吗?观察前面作过的两串数:

6→3→10→5→16→8→4→2→1;

16384→8192→4096→2048→1024→512→256→128→64→32→16→8→3→2→1。

最后的三个数都是4→2→1。

为了验证这个事实,从1开始算一下:

3×1+1=4,4÷2=2,2÷2=1。结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象。

现在以1998为例:

12+92+92+82=1+81+81+64=227,

22+22+72=4+4+49=57,

52+72=25+49=74,

72+42=49+16=65,

62+52=36+25=61,

62+12=36+1=37,

32+72=9+49=58,

52+82=25+64=89。

下面再经过八步,就又出现89,从而产生了循环:

千古之谜

现代数论的创始人、法国大数学家费尔马(1601-1665),对不定方程极感兴趣,他在丢番图的《算术》这本书上写了不少注记。在第二卷问题8“给出一个平方数,把它表示为两个平方数的和”的那一页的空白处,他写道:“另一方面,一个立方不可能写成两个立方的和,一个四方不可能写成两个四方的和。一般地,每个大于2的幂不可能写成两个同次幂的和。”

换句话说,在n>2时,

xn+yn=zn(1)

没有正整数。这就是举世闻名的费尔马大定理。

“关于这个命题”,费尔马说:“我有一个奇妙的证明,但这里的空白太小了,写不下。”

人们始终未能找到弗尔马的“证明”。很多数学家攻克这座城堡,至今未能攻克。所以,费尔马大定理实际上是费尔马大猜测。人们在费尔马的书信与手稿中,只找到了关于方程

x4+y4=z4(2)

无正整数解的证明,恐怕他真正证明的“大定理”也就是这n=4的特殊情况。

既然(2)无正整数解,那么方程

x4k+y4k=z4k(3)

无解(如果(3)有解,即有正整数x0,y0,z0使

x04k+y04k=z04k(3)

那么(x0k)4+(y0k)4=(z0k)4

这与(2)无解矛盾!

同理,我们只要证明对于奇素数P,不定方程

xp+yp=zp(4)

无正整数解,那么费尔马大定理成立(因为每个整数n>2,或者被4整除,或者有一个奇素数p是它的因数)。

(4)的证明十分困难。在费尔马逝世以后90多年,欧拉迈出了第一步。他在1753年8月4日给哥德巴赫的信中宣称他证明了在p=3时,(4)无解。但他发现对p=3的证明与对n=4的证时截然不同。他认为一般的证明(即证明(4)对所有的素数p无正整数解)是十分遥远的。

一位化名勒布朗的女数学家索菲·吉尔曼(1776-1831)为解费尔马大定理迈出了第二步。她的定理是:

“如果不定方程x5+y5=z5有解,那么5|xyz。”

人们习惯把方程(4)的讨论分成两种情况。即:如果方程xp+yp=zp无满足p|xyz的解,就说对于p,第一种情况的费尔马大定理成立。

如果方程xp+yp=zp无满足p|xyz的解,就说对于p,第二种情况的费尔马大定理成立。

因此,吉尔曼证明了p=5,第一种情况的费尔马大定理成立。她还证明了:如果p与2p+1都是奇素数,那么第一种情况的费尔马大定理成立。她还进一步证明了对于100的奇素数p,第一种情况的费尔马大定理成立。

在欧拉解决p=3以后的90余年里,尽管许多数学家企图证明费尔马大定理,但成绩甚微。除吉尔曼的结果外,只解决了p=5与p=7的情况。

攻克p=5的荣誉由两位数学家分享,一位是刚满20岁、初出茅庐的狄利克雷,另一位是年逾70已享盛名的勒仕德。他们分别在1825年9月和11月完成了这个证明。

p=7是法国数学家拉梅在1839年证明的。

这样对每个奇素数p逐一进行处理,难度越来越大,而且不能对所有的p解决费尔马大定理。有没有一种方法可以对所有的p或者至少对一批p,证明费尔马大定理成立呢?德国数学家库麦尔创立了一种新方法,用新的深刻的观点来看费尔马大定理,给一般情况的解决带来了希望。

库麦尔利用理想理论,证明了对于p100费尔马大定理成立。巴黎科学院为了表彰他的功绩,在1857年给他奖金3000法郎。

库麦尔发现伯努列数与费尔马大定理有重要联系,他引进了正规素数的概念:如果素数p不整除B2,B4……Bp-3的分母,p就称为正规素数,如果p整除B2,B4……Bp-3中某一个的分母就称为非正规素数。例如5是正规数,因为B2的分母是6而5×6。7也是正规素数,因为B2的分母是6,B4的分母是30,而7×6,7×30。

1850年,库麦尔证明了费尔马大定理对正规素数成立,这一下子证明了对一大批素数p,费尔马大定理成立。他发现在100以内只有37、59、67是非正规素数,在对这三个数进行特别处理后,他证明了对于p100,费尔马大定理成立。

正规素数到底有多少?库麦尔猜测有无限个,但这一猜测一直未能证明。有趣的是,1953年,卡利茨证明了非正规素数的个数是无限的。

近年来,对费尔马大定理的研究取得了重大进展。1983年,西德的伐尔廷斯证明了“代数数域K上的(非退化的)曲线F(x,y)=0,在出格g>1时,至多有有限多个K点。”

作为它的特殊情况,有理数域Q上的曲线xn+yn-1=0(5)在亏格g>1时,至多有有限多个有理点。

这里亏格g是一个几何量,对于曲线(5),g可用g=(n-1)(n-2)2来计算,由(6)可知在n>3时,(5)的亏格大于1,因而至多有有限多个有理点(x,y)满足(5)。

方程

xn+yn=2n

可以化成

x2n+y4n-1=0

改记x2,y2为(x,y),则(7)就变成(5)。因此由(5)只有有限多个有理数解x、y,立即得出(1)只有有限多个正整数解x、y、z,但这里把x、y、z与kx、ky、kz(k为正整数)算作同一组解。

因此,即使费尔马大定理对某个n不成立,方程(7)有正整数解,但解也至多有有限组。

1984年,艾德勒曼与希思布朗证明了第一种情况的费尔马大定理对无限多个p成立。他们的工作利用了福夫雷的一个重要结果:有无穷多个对素数p与q,满足q|p-1及q>p2/3个。而福夫雷的结果又建立在对克路斯特曼的一个新的估计上,后者引起了不少数论问题的突破。

现在还不能肯定费尔马大定理一定正确,尽管经过几个世纪的努力。瓦格斯塔夫在1977年证明了对于p125000,大定理成立。最近,罗寒进一步证明了对于p4100万,大定理成立。但是,费尔马大定理仍然是个猜测。如果谁能举出一个反例,大定理就被推翻了。不过反例是很难举的。

五家共井

我国最早提出不定方程问题,它由“五家共井”引起。古代,没有自来水,几家合用一个水井是常见的事。《九章算术》一书第8章第13题就是“五家共井”问题:

今有五家共井,甲二绠不足,如乙一绠;乙三绠不足,如丙一绠;丙四绠不足,如丁一绠;丁五绠不足,如戊一绠;戊六绠不足,如甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何!

用水桶到井中取水,当然少不了绳索,“绠”就是指“绳索”。原题的意思是:

五家共用一水井。井深比2条甲家绳长还多1条乙家绳长;比3条乙家绳长还多1条丙家绳长;比4条丙家绳长还多1条丁家绳长;比5条丁家绳长还多1条戊家绳长;比6条戊家绳长还多1条甲家绳长。如果各家都增加所差的另一条取水绳索,刚刚好取水。试问井深、取水绳长各多少?

虽然该问题是虚构的,它是最早的一个不定方程问题。

用现代符号,可设甲、乙、丙、丁、戊各家绳索长分别为x、y、z、u、v;井深为h。根据题意,可得2x+y=h,3y+z=h,4z+u=h,5u+v=h,6v+x=h。

这是一个含有6个未知数、5个方程的方程组。未知数的个数多于方程个数的方程(或方程组)叫不定方程。用加减消元法可得x=265721h,y=191721h,z=148721h,u=129721h,v=76721h。

给定h不同的数值,就可得到x、y、z、u、v的各个不同的数值。只要再给定一些特定条件,就可得到确定的组解。原书中只给出一组解,是最小正整数解。

我国古代数学家在《九章算术》的基础上,对不定方程作出了辉煌的成绩。“五家共井”问题是后来百鸡术及大衍求一术的先声。

“五家共井”问题,曾引起世界上很多数学家的注视。在西方数学史书中,把最早研究不定方程的功绩归于希腊丢番都。其实,他在公元250年左右才研究这些问题,要比我国迟200多年。

公元6世纪上半期,张丘建在他的《张丘建算经》中有一个百鸡问题:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏生,值钱一。凡百钱,买鸡百只。问鸡翁、母、雏各几何?

意思是,如果1只公鸡值5个钱;1只母鸡值3个钱;3只小鸡值1个钱。现用100个钱,买了100只鸡。问公鸡、母鸡、小鸡各多少?

设公鸡、母鸡、小鸡分别为x、y、z只,则可得不定方程消去z不难得出5x+3y+13z=100x+y+z=100消去z不难得出y=7x4因为y是正整数,所以x必须是4的倍数。

设x=4t,则y=25-7t,z=75+3t

x>0,4t>0,t>0;

又y>0,25-7t>0,t347

故t=1,2,3。

原方程组有三组答案:

{x=4,y=18,z=78 {x=8,y=11,z=81 {x=12,y=4,z=84

数学史家评论说,一道应用题有多组答案,是数学史上从未见到过的,百鸡问题开了先例。《张丘建算经》中没有给出解法,只说:“术曰:鸡翁每增四,鸡母每减七,鸡雏每益三,即得。”意思是:如果少买7只母鸡,就可多买4只公鸡和3只小鸡。因为7只母鸡值钱21,4只公鸡值钱20,两者相差3只小鸡的价格。只要得出一组答案,就可推出其余两组。但这解法怎么来的?书中没有说明。因此,所谓“百鸡术”即百鸡问题的解法就引起人们的极大兴趣。

稍后,甄鸾在《数术记遗》一书中又提出了两个“百鸡问题”,题目意思与原百鸡问题相同,仅数字有所区别。到了宋代,着名数学家杨辉在他的《续古摘奇算法》一书中,也引用了类似的问题:

“钱一百买温柑、绿桔、扁桔共一百枚。只云温柑一枚七文,绿桔一枚三文,扁桔三枚一文。问各买几何?”

到了明清时代,还有人提出了多于三元的“百鸡问题”。不过,各书均与《张丘建算经》一样,没有给出问题的一般解法。

7世纪时,有人对百鸡问题提出另一种解法,但只是数字的凑合。到了清代焦循在他的《加减乘除释》一书中指出其错误。之后,不断有人提出新的解法,但都没有完全得到普遍解决此类题目的通用方法。例如丁取忠在他的《数学拾遗》中给出一个比较简易的解法:先设没有公鸡,用100个钱买母鸡和小鸡共100只,得母鸡25只、小鸡75只。现在少买7只母鸡,多买4只公鸡和3只小鸡,便得第一组答案。同理可推出其余两组。直到19世纪,人们才把这类问题同“大衍求一术”结合起来研究。

百鸡问题是一个历史名题,在世界上有很大影响。国外常见类似的题目。

速度趣题

1.自行车和苍蝇

同类推荐
  • 保教知识与能力辅导用书

    保教知识与能力辅导用书

    本书根据教育部对幼儿教师的最新要求编著,以吻合国家教师资格考试的最新大纲,主要内容涉及:学前儿童发展、学前教育原理、生活指导、环境创设、游戏活动的指导、教育活动的组织与实施、教育评价七大模块。体例上先梳理相关的知识点,然后结合案例对知识点进行理解和运用,最后辅以模拟题或真题来帮助考生寻找解题思路。
  • 让学生掌握沟通艺术的66个故事

    让学生掌握沟通艺术的66个故事

    成长是—道道色彩的流动,鲜艳的连衣裙,粉红的蝴蝶结,庄重的校服,这一切都记录着我们多彩的、快乐的人生。从小学到中学、再到大学,不见了童话书上多彩的封面,多了教科书那严肃的面孔。—切浮躁归于沉静,昔日绚丽的色彩只去装点青春的梦境。
  • 用心爱:中小学教师师德修养漫谈

    用心爱:中小学教师师德修养漫谈

    本书紧扣《规范》的基本精神,结合新形势下经济、社会和教育发展对中小学教师应有的道德品质和职业行为的基本要求,解读《规范》修订的基本原则以及内容体系,重点解读六条师德规范的内涵,疏理其间的逻辑关系,构成教师职业道德理论体系。
  • 布克熊之经典精读系列:再别康桥

    布克熊之经典精读系列:再别康桥

    《再别康桥》本书汇集了徐志摩经典的诗歌作品,精心选择了《志摩的诗》《翡冷翠的一夜》《猛虎集》《云游集》四本集子,以及多篇流传于世的集外诗歌收录其中。《再别康桥》《翡冷翠的一夜》《沙扬娜拉》等著名诗作,将再次触动读者柔软的心。徐志摩的诗作,文字舒展而轻盈,且不失浪漫诗人的热忱与激情,有一种音乐之美蕴含其中,令人感受到曼妙的艺术趣味。他在诗中抒发理想、赞颂爱情、思考生存的意义,也毫不留情地揭露当时社会的黑暗,批判丑陋的人性。他对自由、爱与美的无限向往,是他的诗歌乃至人生的主旋律,对一代一代的青年产生了深远的影响。
  • 中医护理学

    中医护理学

    本书内容包括:中医护理学基础理论、中医护理评估基本内容、中医用药护理、针灸疗法及护理、推拿护理技术、内科常见病证护理、妇科常见病证护理、儿科常见病证护理、外科常见病证护理、五官科常见病证护理。
热门推荐
  • 归去流萤终辞西

    归去流萤终辞西

    北齐七公主自小薄情,在经历了家变以后,这份情义,更加稀薄。一场阴谋,串起了她和他的姻缘,到底是姻缘,还是孽缘谁也不知道。究竟是谁得了谁的心,谁负了谁的情深。烟花易冷,物是人非。
  • 最强启灵人

    最强启灵人

    原名《被e`mo找上门的人》。地狱空荡荡,e`mo在人间。可怜的主角一穿越就遇上了e`mo来找他讨债的事情,他不得不想尽办法把债还上,否则自己的灵魂将被带入地狱。谁能帮帮他呢?或许成为这个世界最强大的启灵人才是唯一的出路……
  • 掌幽冥

    掌幽冥

    初世为人,市井黎民,所求者王图霸业,皆妄念。再世皇族,霸业已成,却奈何孤掌难鸣,徒嗟叹。身死入阴界,天道崩塌,轮回不再,异宝在手,看我执掌幽冥!
  • 宿主,请原地爆炸

    宿主,请原地爆炸

    佣兵之王携带系统回归都市!他冷血、强势、无敌、碾压一切敌人!但他也有无奈……系统:叮,检测到宿主遇到极品不推,启动毁灭装置,十五秒后请宿主原地爆炸。叶枫:“可是……”系统:别说了,十二秒后,准备爆炸吧。“……”书友群:822357957
  • 宣和奉使髙丽图

    宣和奉使髙丽图

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 七里樱

    七里樱

    年少时,我们,似乎成为了世界的主角,遗憾过,苦恼过,伤心心过,但庆幸的是在那个即将逝去的青春里,你世界的男主随着四季辗转在你身旁,陪你笑,陪你哭……终有一天,你发现他只是喜欢你身边的那个人而已…“你知道的,我喜欢她哎。”“没事…”至少我的青春,你来过就好。
  • 青梅竹马甜得很

    青梅竹马甜得很

    【1V1】甜文。养成系列时隔多年,林仙九再次回来,这次一回来就被青梅竹马抓了去结婚。“上次让你跑掉了,这次不可能了。”说结婚就结婚一点商量都没有。同学聚会。林仙九喝多了。囔着要嫁给:蔡徐坤,鹿晗,王俊凯,易烊千玺,王源……这时竹马跑过来摸摸头“嫁给江鹤川委屈你了?”
  • 苏荨的第三种婚姻

    苏荨的第三种婚姻

    这世上有幸福的婚姻,也有不幸的婚姻。除此之外,还有处于这两者边缘的,离婚不离家,或者隐离。选择这种婚姻模式的,大多是为了孩子,为了老人。为了不让老人担心,不让孩子承受巨大学业压力的同时还要承受父母离婚的压力他们选择隐离。其实这种离婚不离家的第三种婚姻,对于还有感情的夫妻来说,最终还可以复合;而真的不能再在一起的,经过时间的磨合也不济于是,那么等孩子大了,也可以各奔东西了。而立之年的男男女女们,他们要背负太多的责任,要隐忍太多生活里的不幸福。而这种介于幸与不幸之间的婚姻,就构成了第三种家庭。处于第三种婚姻的苏荨,遇到了蒋青。那是幸还是不幸呢?
  • 我是女神我无所不能

    我是女神我无所不能

    宋初有个与生俱来的能力,其名曰“跟谁表白谁倒霉”......正当善良的她打算孤独终老的时候,前世的债主们突然闯进了她的生活,要给她解除封印。 债主?什么债? 情债!还不止一笔! 封印?原来她前世还是位女神,抬抬手就能翻天覆地毁灭世界那种。不过......要我以身相许来还债?这就有点问题了......