登陆注册
3402100000006

第6章 看不见却离不开的气体(2)

人们为纪念这位大科学家,特意为他树立了纪念碑。后来,他的后代亲属德文郡八世公爵S.C.卡文迪许将自己的一笔财产捐赠剑桥大学,并于1871年建成实验室,它最初是以H.卡文迪许命名的物理系教学实验室,后来实验室扩大为包括整个物理系在内的科研与教育中心,并以整个卡文迪许家族命名。该中心注重独立的、系统的、集团性的开拓性实验和理论探索,其中关键性设备都提倡自制。这个实验室曾经对物理科学的进步作出了巨大的贡献。近百年来卡文迪许实验室培养出的诺贝尔奖金获得者已达26人。麦克斯韦、瑞利、J.J.汤姆逊、卢瑟福等先后主持过该实验室。

英国是19世纪最发达的资本主义国家之一。把科学实验室从科学家私人住宅中扩展出来,成为一个研究单位,这种做法顺应了19世纪后半叶工业技术对科学发展的要求,为科学研究的开展起了很好的促进作用。随着科学技术的发展,科学研究工作的规模越来越大,社会化和专业化是必然的趋势。

霓虹灯为什么五颜六色

稀有气体的单质在常温下为气体,且除氩气外,其余几种在大气中含量很少(尤其是氦),故得名“稀有气体”。

为什么叫做稀有气体

历史上稀有气体曾被称为“惰性气体”,这是因为它们的原子最外层电子构型除氦为1s外,其余均为8电子构型ns2np6,而这两种构型均为稳定的结构。因此,稀有气体的化学性质很不活泼,所以过去人们曾认为它们与其他元素之间不会发生化学反应,称之为“惰性气体”。然而正是这种绝对的概念束缚了人们的思想,阻碍了对稀有气体化合物的研究。

1962年,一个在加拿大工作的26岁的英国青年化学家合成了第一个稀有气体化合物Xe(氙),引起了化学界的很大兴趣和重视。许多化学家竞相开展这方面的工作,先后陆续合成了多种“稀有气体化合物”,促进了稀有气体化学的发展。而“惰性气体”这一名称也不再符合事实,故改称稀有气体。

稀有气体的发现

六种稀有气体元素是在1894年~1900年间陆续被发现的。发现稀有气体的主要功绩应归于英国化学家莱姆赛(Ramsay W,1852~1916)。二百多年前,人们普遍认为,空气里除了少量的水蒸气、二氧化碳外,其余的就是氧气和氮气。

1785年,英国科学家卡文迪许在实验中发现,把不含水蒸气、二氧化碳的空气除去氧气和氮气后,仍有很少量的残余气体存在。这种现象在当时并没有引起化学家的重视。

一百多年后,英国物理学家雷利测定氮气的密度时,发现从空气里分离出来的氮气每升质量是1.2572克,而从含氮物质制得的氮气每升质量是1.2505克。经过多次测定,两者质量相差仍然是几毫克。可贵的是雷利没有忽视这种微小的差异,他怀疑从空气分离出来的氮气里含有没被发现的较重的气体。于是,他查阅了卡文迪许过去写的资料,并重新做了实验。1894年,他在除掉空气里的氧气和氮气以后,得到了很少量的极不活泼的气体。与此同时,雷利的朋友、英国化学家拉姆塞用其他方法从空气里也得到了这样的气体。经过分析,他们判断该气体是一种新物质。由于这气体极不活泼,所以命名为氩(拉丁文原意是“懒惰”)。以后几年里,拉姆塞等人又陆续从空气里发现了氦气、氖气(名称原意是“新的”意思)、氪气(名称原意是“隐藏”意思)和氙气(名称原意是“奇异”意思)。

霓虹灯是城市的美容师,每当夜幕降临时,华灯初上,五颜六色的霓虹灯就把城市装扮得格外美丽。那么,霓虹灯是怎样发明的呢?

据说,霓虹灯是英国化学家拉姆赛在一次实验中偶然发现的。那是1898年6月的一个夜晚,拉姆赛和他的助手正在实验室里进行实验,目的是检查一种稀有气体是否导电。

拉姆赛把一种稀有气体注射在真空玻璃管里,然后把封闭在真空玻璃管中的两个金属电极连接在高压电源上,聚精会神地观察这种气体能否导电。

突然,一个意外的现象发生了:注入真空管的稀有气体不但开始导电,而且还发出了极其美丽的红光。这种神奇的红光使拉姆赛和他的助手惊喜不已,他们打开了霓虹世界的大门。

拉姆赛把这种能够导电并且发出红色光的稀有气体命名为氖气。后来,他继续对其他一些气体导电和发出有色光的特性进行实验,相继发现了氙气能发出白色光,氩气能发出蓝色光,氦气能发出黄色光,氪气能发出深蓝色光……不同的气体能发出不同的色光,五颜六色,犹如天空美丽的彩虹。霓虹灯也由此得名。

太阳元素——氦来到凡间

氦为稀有气体的一种。元素名来源于希腊文,原意是“太阳”。氦在通常情况下为无色、无味的气体,氦是唯一不能在标准大气压下固化的物质。氦是最不活泼的元素,基本上不形成什么化合物。氦的应用主要是作为保护气体、气冷式核反应堆的工作流体和超低温冷冻剂。

发现了宇宙中的氦

1868年8月18日,法国天文学家让桑赴印度观察日全食,利用分光镜观察日全食,从黑色月盘背面散射出的红色火焰,看见有彩色的彩条,是太阳喷射出来的炽热和其他光谱。他发现一条黄色谱线。1868年10月20日,英国天文学家洛克耶也发现了这样的一条黄线。

经过进一步研究,认识到这是一条不属于任何已知元素的新线,因此一种新的元素产生的,这个新元素被命名为helium,来自希腊文helios(太阳),元素符号定为He。这是第一个在地球以外,在宇宙中发现的元素。为了纪念这件事,当时曾铸造一块金质纪念牌,一面雕刻着驾着四匹马战车的传说中的太阳神阿波罗(Apollo)像,另一面雕刻着詹森和洛克耶的头像,下面写着:1868年8月18日太阳突出物分析。

过了二十多年后,拉姆赛在研究钇铀矿时发现了一种神秘的气体。由于他研究了这种气体的光谱,发现可能是詹森和洛克耶发现的那条黄线D3线。但由于他没有仪器测定谱线在光谱中的位置,他只有求助于当时最优秀的光谱学家之一的伦敦物理学家克鲁克斯。克鲁克斯证明了,这种气体就是氦。这样氦在地球上也被发现了。

制取液态氦

1908年7月13日晚,荷兰物理学家卡美林·奥涅斯和他的助手们在著名的莱顿实验室取得成功,氦气变成了液体。他第一次得到了320立方厘米的液态氦。

要得到液态氦,必须先把氦气压缩并且冷却到液态空气的温度,然后让它膨胀,使温度进一步下降,氦气就变成了液体。

液态氦是透明的容易流动的液体,就像打开了瓶塞的汽水一样,不断飞溅着小气泡。

液态氦是一种与众不同的液体,它在-269℃就沸腾了。在这样低的温度下,氢也变成了固体,千万不要使液态氦和空气接触,因为空气会立刻在液态氦的表面上冻结成一层坚硬的盖子。

许多年来,全世界只有荷兰卡美林·奥涅斯的实验室能制造液态氦。直到1934年,在英国卢瑟福那里学习的前苏联科学家卡比查发明了新型的液氦机,每小时可以制造4升液态氦。以后,液态氦才在各国的实验室中得到广泛的研究和应用。

在今天,液态氦在现代技术上得到了重要的应用。例如要接收宇宙飞船发来的传真照片或接收卫星转播的电视信号,就必须用液态氦。接收天线末端的参量放大器要保持在液氦的低温下,否则就不能收到图像。

铝膜气球,国内也有叫铝箔气球、氢气球、氦气球,根据其使用场合的不同可分为:生日派对气球、玩具卡通铝膜气球、礼品气球、装饰气球、广告气球、情人节气球、儿童节气球、圣诞节气球、春节氢气球等各类节日气球。在国内一般都是采用氢气来充气,所以国内的人一般都叫它为氢气球,但是使用氢气的缺点就是比较危险。而国外一般都是使用氦气来给铝膜气球充气,所以一般国外都叫做氦气球。

氦气球真正开始生产于20世纪70年代末,之前由于小孩子玩耍乳胶气球时容易爆破,而且气体保持时间也比较短,所以人们一直想研制一种气球,既能较长时间的保持气体不漏气,又能承受小孩子的重量。终于在20世纪70年代末找到了铝膜这种材料。而氦气是惰性气体,所以用来填充气球不会有任何危险。这些生产出来的氦气气球表面印刷看起来不仅非常的精美,而且还可生产出大小不一的恐龙、米奇、唐老鸭、海豚、飞机、老虎、大象等各种外形的铝膜气球。产品一经问世就深受人们喜爱。

不稀有的稀有气体——氩

氩是一种单质、无色、无臭、无味的稀有气体,是目前最早发现的稀有气体。氩气在自然界中含量很多,但化学性极不活泼,因此它既不能燃烧,也不能助燃,但却是稀有气体中在空气中含量最多的一个。氩气被广泛应用到冶金工业。

氩的发现过程

氩曾经在1785年由亨利·卡文迪许制备出来,但卡文迪许却没发现这是一种新的元素;直到1894年,约翰·威廉·斯特拉斯和苏格兰的化学家威廉·拉姆齐才通过实验确定氩是一种新元素。他们主要是先从空气样本中去除氧、二氧化碳、水汽等得到的氮气与从氨分解出的氮气比较,结果发现从氨里分解出的氮气比从空气中得到的氮气轻1.5%。虽然这个差异很小,但是已经大到误差的范围之外。所以他们认为空气中应该含以一种不为人知的新气体,而那个新气体就是氩气。

另外1882年H.F.纽厄尔和W.N.哈特莱从两个独立的实验中观测空气的颜色光谱时,发现光谱中存在已知元素光谱无法解释的谱线,但并没有意识到那就是氩气。由于在自然界中含量很多,氩是目前最早发现的稀有气体,目前它的符号为Ar。

不是很稀有的稀有气体

氩在地球大气中的含量以体积计算为0.934%,而以质量计算为1.29%,至于在地壳中可说是完全不含氩,因为氩在自然情况下不与其他化合物反应,而无法形成固态物质。也因为这样,工业用的氩大多就直接从空气中提取。主要是用分馏法提取,而像氮、氧、氖、氪、氙等气体也都是这样从空气中提取的。

在火星的大气中,氩-40以体积计算的话占有1.6%,而氩-36的浓度为5ppm;另外1973年水手号计划的太空探测器飞过水星时,发现它稀薄的大气中占有70%氩气,科学家相信这些氩气是从水星岩石本身的放射性同位素衰变而成的。卡西尼—惠更斯号在土星最大的卫星,也就是泰坦上,也发现少量的氩。

氩稳定的同位素有24种,一般来说稳定的氩-40是由地壳中的钾-40(40K)经由电子俘获或正子发射衰变来的。钾-40以这两种方式衰变成氩只占所有的11.2%,另外还有88.8%的氩经由钙-40(40Ca)的β衰变而来。这个特性可以被用来测定岩石的年龄。

在地球大气中,不稳定的氩-39(39Ar)可经由宇宙射线轰击氩-40而生成,另外也可以经由钾-39(39K)的中子俘获而来。至于氩-37,则可以从(37Ar)核试验中形成的钙的人造同位素衰变而来,氩-37的寿命非常短,半衰期只有35天。

同类推荐
  • 建筑奇观

    建筑奇观

    套青少年科普知识读物综合了中外最新科技的研究成果,具有很强的科学性、知识性、前沿性、可读性和系统性,是青少年了解科技、增长知识、开阔视野、提高素质、激发探索和启迪智慧的良好科谱读物,也是各级图书馆珍藏的最佳版本。
  • 人造的暗河(谷臻小简·AI导读版)

    人造的暗河(谷臻小简·AI导读版)

    《人造的暗河》一书是介绍环境保护方面的科学知识,让读者在有限的篇幅中多多掌握保护环境的专业技能的科普读物。本书揭示了人类对环境问题全面而深入的认识,以及为防治环境问题的出现及危害开展的科学研究,还有为保护环境所采取的工程技术和政治、法律、经济、行政、教育等手段。
  • 留美学生签证宝典

    留美学生签证宝典

    本书适用于即将留美及已经留美的人群。书中采用简洁明了的问答形式,对多种真实场景作出描述及解析,为您省下一大笔移民律师费或签证中介费。让你从大量的网上信息采集、相关信息收集和各种道听途说中解脱出来。作者详尽介绍了有关签证申请、面试、行程和交通、学籍注册、签证延期和转换、纳税等方面的内容,也有绿卡、H1B和L-1签证的相关解析。
  • 有趣的力学

    有趣的力学

    力,无处不在,无时不有。它就在我们身边,就在我们的生活之中,我们无时无刻不在和力打交道。本文将通过讲述我们身边关于力的一系列故事,来加深我们对力的认识和理解。
  • 宝藏新探百科(科学探索百科)

    宝藏新探百科(科学探索百科)

    人类社会和自然世界是那么丰富多彩,使我们对于那许许多多的难解之谜,不得不密切关注和发出疑问。人们总是不断地去认识它,勇敢地去探索它。虽然今天科学技术日新月异,达到了很高程度,但对于许多谜团还是难以圆满解答。人们都希望发现天机,破解无限的谜团。古今中外许许多多的科学先驱不断奋斗,一个个谜团不断解开,推进了科学技术的大发展,但又发现了许多新的奇怪事物和难解之谜,又不得不向新的问题发起挑战。科学技术不断发展,人类探索永无止境,解决旧问题,探索新领域,这就是人类一步一步发展的足迹。
热门推荐
  • 缠蛇记(上)

    缠蛇记(上)

    蒋峻熙退役后,一时没找到合适的事做。这天,蒋峻熙来到县城,信步游街,见大街上一些两元店生意红火,他想,开两元店本钱要不了多少,但县城的房租太贵。如果开家“移动的两元店”,就不需要房租了,走乡串户,乡下人就讲究个经济实惠,说不定生意会出奇地好呢。蒋峻熙上网查询了一下,发现许多大一点的地级市,都有专门给两元店配货的公司。蒋峻熙坐上了到偏远山区古溪县的长途汽车,准备以古溪县为“根据地”。
  • 万道之始于狐妖龙珠

    万道之始于狐妖龙珠

    一个被万道选中特殊却又平凡的小人物,至尊?万道?宇宙的千古纪元之谜,微微因此展开那巨大的獠牙。 〔〔注:本文不是单同人文,所以世界观并不一定是原本的世界观。〕〕 〔〔注:由于是新人,前期会略显崩塌,本书起飞于十几万字后。〕〕动漫:《狐妖》《超神学院》《魁拔》《天行九歌》《龙珠》等等小说:《全球高武》《遮天》等等电视剧:等等!《狐妖》,《龙珠》前段,《魁拔》,《天行九歌》《全球高武》《遮天》《狐妖五百年前》《超神学院》《龙珠后期》等等以上顺序不确定,毕竟作者要整理体系。力量体系,循序渐进。…………其他可能也有,如一人之下,不良人等等。欢迎大家加入。
  • 佛说圣持世陀罗尼经

    佛说圣持世陀罗尼经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 重生战将

    重生战将

    这个时代将星陨落,机缘巧合下却又在异时代崛起。涅槃重生,这一次他是否还能再创辉煌。
  • 天使的印记

    天使的印记

    故事发生天族,在天使族,巫族,精灵族新一代的王子公主之间,展开了一段生离死别的爱恨情仇。而伴随着他们之间的爱恨情仇逐渐浮出水面的还有那一段段不为人知即将被冰封的往事~当往事浮出水面,现在的人儿又将何去何从?是忍痛舍爱,还是要生死不相离!
  • 中国近代法律思想述论

    中国近代法律思想述论

    《中国近代法律思想述论》是一部论述中国近代法律思潮兴起、流变、演进的专著。从近代法律思想发展之背景谈起,以鸦片战争作为历史分界点,比较全面地介绍了清代的思想家及其政治法律思想,修律给晚清社会带来了巨大的社会冲击,造成了礼法之争,本书简述礼法之争的基本过程,并对礼法两派的观点做了概述。
  • 商女难娶:娘子说的是

    商女难娶:娘子说的是

    商岚雪死后莫名其妙的穿越成为了一个县官的夫人,本以为可以安安生生的度过后半辈子。但是手帕上的血书,尸体内被塞进的残肢,以及皇宫内死而复生的妃子,将她整个人拖入了一场惊天的阴谋之中。而在这阴谋之中,商岚雪渐渐的发现,自己那小小的县官夫君隐藏着令人心惊的秘密。--情节虚构,请勿模仿
  • 谚语荟萃

    谚语荟萃

    集经典谚语于一家,给你不一样的谚语体验。既是增长知识的必备宝典,又是方便的谚语工具书。
  • 青灯佛影

    青灯佛影

    无言独对,青灯一点,神游天际。仙人的事,你我的影,佛眼自照。有一个地球人,却有人告诉他一些诡秘——天是圆的地是方的;——《山海经》中的世界乃是真实存在;——敦煌莫高窟下面封印了一只古魔;——西海是真实存在的;——五脉先人曾与仙界用天道契书定下《龙门道约》。一场风花,一曲挽歌,落寞的爱情史诗。一盘棋局,一个纪元,诸天的未来兴亡。他要告诉别人——如何乾坤独断,逆乱阴阳。且看一拳碎虚空,见岁月尽头——
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。