登陆注册
5343500000030

第30章

First let the luminous body be appearing on the horizon at the point H, and let KM be reflected to H, and let the plane in which A is, determined by the triangle HKM, be produced. Then the section of the sphere will be a great circle. Let it be A (for it makes no difference which of the planes passing through the line HK and determined by the triangle KMH is produced). Now the lines drawn from H and K to a point on the semicircle A are in a certain ratio to one another, and no lines drawn from the same points to another point on that semicircle can have the same ratio. For since both the points H and K and the line KH are given, the line MH will be given too;consequently the ratio of the line MH to the line MK will be given too. So M will touch a given circumference. Let this be NM. Then the intersection of the circumferences is given, and the same ratio cannot hold between lines in the same plane drawn from the same points to any other circumference but MN.

Draw a line DB outside of the figure and divide it so that D:B=MH:MK. But MH is greater than MK since the reflection of the cone is over the greater angle (for it subtends the greater angle of the triangle KMH). Therefore D is greater than B. Then add to B a line Z such that B+Z:D=D:B. Then make another line having the same ratio to B as KH has to Z, and join MI.

Then I is the pole of the circle on which the lines from K fall. For the ratio of D to IM is the same as that of Z to KH and of B to KI. If not, let D be in the same ratio to a line indifferently lesser or greater than IM, and let this line be IP. Then HK and KI and IP will have the same ratios to one another as Z, B, and D. But the ratios between Z, B, and D were such that Z+B:D=D: B. Therefore IH:IP=IP:IK. Now, if the points K, H be joined with the point P by the lines HP, KP, these lines will be to one another as IH is to IP, for the sides of the triangles HIP, KPI about the angle I are homologous. Therefore, HP too will be to KP as HI is to IP. But this is also the ratio of MH to MK, for the ratio both of HI to IP and of MH to MK is the same as that of D to B. Therefore, from the points H, K there will have been drawn lines with the same ratio to one another, not only to the circumference MN but to another point as well, which is impossible. Since then D cannot bear that ratio to any line either lesser or greater than IM (the proof being in either case the same), it follows that it must stand in that ratio to MIitself. Therefore as MI is to IK so IH will be to MI and finally MH to MK.

If, then, a circle be described with I as pole at the distance MI it will touch all the angles which the lines from H and K make by their reflection. If not, it can be shown, as before, that lines drawn to different points in the semicircle will have the same ratio to one another, which was impossible. If, then, the semicircle A be revolved about the diameter HKI, the lines reflected from the points H, K at the point M will have the same ratio, and will make the angle KMH equal, in every plane. Further, the angle which HM and MImake with HI will always be the same. So there are a number of triangles on HI and KI equal to the triangles HMI and KMI. Their perpendiculars will fall on HI at the same point and will be equal.

Let O be the point on which they fall. Then O is the centre of the circle, half of which, MN, is cut off by the horizon. (See diagram.)Next let the horizon be ABG but let H have risen above the horizon. Let the axis now be HI. The proof will be the same for the rest as before, but the pole I of the circle will be below the horizon AG since the point H has risen above the horizon. But the pole, and the centre of the circle, and the centre of that circle (namely HI)which now determines the position of the sun are on the same line. But since KH lies above the diameter AG, the centre will be at O on the line KI below the plane of the circle AG determined the position of the sun before. So the segment YX which is above the horizon will be less than a semicircle. For YXM was a semicircle and it has now been cut off by the horizon AG. So part of it, YM, will be invisible when the sun has risen above the horizon, and the segment visible will be smallest when the sun is on the meridian; for the higher H is the lower the pole and the centre of the circle will be.

同类推荐
  • 一字轮王佛顶要略念诵法

    一字轮王佛顶要略念诵法

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 直斋书录解题

    直斋书录解题

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 归有园麈谈

    归有园麈谈

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 增慧陀罗尼经

    增慧陀罗尼经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 胜幢臂印陀罗尼经

    胜幢臂印陀罗尼经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 职工和谐相处手册

    职工和谐相处手册

    这些知识内容具有很强的系统性、指导性和实用性,简明扼要,易学好懂,十分便于操作和实践,是广大企事业单位用以指导职工文化建设与素质修养的良好读物。
  • 一条混迹娱乐圈的狗

    一条混迹娱乐圈的狗

    别问这个故事讲什么,对不起,做人有二十多年经验,做狗第一次,我也不知道……
  • 深夜粥铺

    深夜粥铺

    短篇小说集《深夜粥铺》是作家、诗人、「ONE·一个」人气作者大斯全新力作。书中收入的8篇小说作品,其中《超级玛丽》被翻译成英文。本书收录备受好评的《深夜粥铺》《触不可及》《墙另一侧的女孩》《超级玛丽》《听见无声》等小说作品。大斯文字情绪细腻,温暖每个正在克制自己感情的人。
  • 愿你喜上眉梢岁月绵长

    愿你喜上眉梢岁月绵长

    那天有风,我的脑子像是百叶窗帘一层一层堆叠着,吹不开,绞着疼。我想找到你了。就像是风灌进了梦里,我们还是很熟悉……苏一说:如果我的过去和回忆是发光的,是因为他永远都在我前面,一遍遍回头,一次次伸手,让我能毫不顾忌,笑眼相迎。李谨怀:其实那时候我们都很迷茫,都有应付不了的时候,但我不能说害怕,至少在她面前。我曾经和她说过,这条初来乍到的人生,我走在前头,她只管在后面跟着就好。我很多时候也在想,如果不是因为她的善意和勇敢,可能我也不会走到现在,其实算是我们一起摸索的成长吧。
  • 人人都要有逻辑思维

    人人都要有逻辑思维

    有些人智商不低,学历不低,情商也不低,但就是办事效率不高,说话啰嗦拖沓,被人莫名其妙地说服了,甚至有理时也莫名其妙输了。这是为什么呢?口才不好?不完全是。能力差也不完全是。其根源是逻辑思维能力差。因为办事没逻辑,效率自然低下;因为说话没逻辑,自然无法简洁明了表达;因为思辨没有逻辑,遇事就不可避免地随着别人的思路走——无论愿意不愿意都那样。在现实社会中,社会竞争激烈,要想赢得一席之地,除了拼智力、拼学历、拼背景、拼努力之外,如果你拼了逻辑思维能力,你将会迅速投影而出。
  • 婚宠不停:盛先生,晚上见

    婚宠不停:盛先生,晚上见

    买菜回家,柏青发现丈夫竟然和便宜妹妹搞在了一起!离婚?还要净身出户?她被迫签字,才发现原来一切都是阴谋。为了复仇,她接近腹黑的总裁大人,却被他宠爱得失身又失心……她想逃,某病娇目光危险:“怎么?占完了便宜,就想拍拍屁股走人?”某女身子抖了抖:“怎敢怎敢,盛先生,你想我怎么负责呀?”总裁大人低头一笑,朝她耳边吹了口气:“我们晚,上,见。”--情节虚构,请勿模仿
  • 鬼帝绝宠:皇叔你行不行

    鬼帝绝宠:皇叔你行不行

    前世她活的憋屈,做了一辈子的小白鼠,重活一世,有仇报仇!有怨报怨!弃之不肖!她是前世至尊,素手墨笔轻轻一挥,翻手为云覆手为雨,天下万物皆在手中画。纳尼?负心汉爱上她,要再求娶?当她什么?昨日弃我,他日在回,我亦不肖!花痴废物?经脉尽断武功全无?却不知她一只画笔便虐你成渣……王府下人表示王妃很闹腾,“王爷王妃进宫偷墨宝,打伤了贵妃娘娘…”“王爷王妃看重了,学仁堂的墨宝当场抢了起来,打伤了太子……”“爱妃若想抢随她去,旁边递刀可别打伤了手……”“……”夫妻搭档,她杀人他挖坑,她抢物他递刀,她打太子他后面撑腰……双重性格男主萌萌哒
  • 隐婚萌宝:爹地请下榻

    隐婚萌宝:爹地请下榻

    苏慕浔,落魄苏家千金,未婚生子,被迫出道当明星还债。遇上孩子爹后,麻烦事就没断过。陆承泽,第一豪门继承人,高冷腹黑,遇上苏慕浔之后,秒变暖男,36计一一用来,只为娶到娇妻。某男:隐婚就隐婚,反正都是暂时的。某宝:唉,可怜本宝宝连个户口都没有。……
  • 以卿为愿,久伴青灯

    以卿为愿,久伴青灯

    她,命定不凡,历经家破人亡,目睹人间情爱,终于青梅竹马修成正果。宫廷盛宴,被帝王相中,二人出逃,失去挚爱后,她浴血归来,一入宫廷,三年为期,她夺了他的江山,一杯毒酒送他入了轮回。这一世,似梦,梦终她爱上了最不该爱上的人。这一世,她失去了最爱她亦是她最爱的两个男人,终是梦醒的太迟......
  • 绝世夜凰

    绝世夜凰

    夜落雪---她是基地的王者,黑暗的王者。夜落雪---月之大陆夜家三小姐,夜城人人知晓的废物野种三小姐。重生的她抛掉三小姐的头衔,女扮男装行走天下修炼灵力走上强者之路,从此大陆无数男女为她疯狂。且看她在异世契神兽如何解开身世之谜,一步步走向世界的顶端。★他说∶我既然承认了你是我的主人,我便会用我的命来守护你。他说∶本少爷看上的人就必须得看上本少爷。他说∶落雪,我不管你是谁,我不知你把我当做谁,我只认你,只是你。他说:落雪,那道背影已经成了我这一生都无法抹去的记忆。他说:雪儿,无论我变成谁,我对你的好对你的心永远都不会改变。过程美男多多,结局1V1