登陆注册
5434500000024

第24章

If one of the premisses is necessary, the other problematic, when the premisses are affirmative a problematic affirmative conclusion can always be drawn; when one proposition is affirmative, the other negative, if the affirmative is necessary a problematic negative can be inferred; but if the negative proposition is necessary both a problematic and a pure negative conclusion are possible. But a necessary negative conclusion will not be possible, any more than in the other figures. Suppose first that the premisses are affirmative, i.e. that A necessarily belongs to all C, and B may possibly belong to all C. Since then A must belong to all C, and C may belong to some B, it follows that A may (not does) belong to some B: for so it resulted in the first figure. A similar proof may be given if the proposition BC is necessary, and AC is problematic. Again suppose one proposition is affirmative, the other negative, the affirmative being necessary: i.e. suppose A may possibly belong to no C, but B necessarily belongs to all C. We shall have the first figure once more: and-since the negative premiss is problematic-it is clear that the conclusion will be problematic: for when the premisses stand thus in the first figure, the conclusion (as we found) is problematic.

But if the negative premiss is necessary, the conclusion will be not only that A may possibly not belong to some B but also that it does not belong to some B. For suppose that A necessarily does not belong to C, but B may belong to all C. If the affirmative proposition BC is converted, we shall have the first figure, and the negative premiss is necessary. But when the premisses stood thus, it resulted that A might possibly not belong to some C, and that it did not belong to some C; consequently here it follows that A does not belong to some B.

But when the minor premiss is negative, if it is problematic we shall have a syllogism by altering the premiss into its complementary affirmative, as before; but if it is necessary no syllogism can be formed. For A sometimes necessarily belongs to all B, and sometimes cannot possibly belong to any B. To illustrate the former take the terms sleep-sleeping horse-man; to illustrate the latter take the terms sleep-waking horse-man.

Similar results will obtain if one of the terms is related universally to the middle, the other in part. If both premisses are affirmative, the conclusion will be problematic, not pure; and also when one premiss is negative, the other affirmative, the latter being necessary. But when the negative premiss is necessary, the conclusion also will be a pure negative proposition; for the same kind of proof can be given whether the terms are universal or not. For the syllogisms must be made perfect by means of the first figure, so that a result which follows in the first figure follows also in the third. But when the minor premiss is negative and universal, if it is problematic a syllogism can be formed by means of conversion; but if it is necessary a syllogism is not possible. The proof will follow the same course as where the premisses are universal; and the same terms may be used.

It is clear then in this figure also when and how a syllogism can be formed, and when the conclusion is problematic, and when it is pure.

It is evident also that all syllogisms in this figure are imperfect, and that they are made perfect by means of the first figure.

同类推荐
  • 六十种曲玉镜台记

    六十种曲玉镜台记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 五教止观一乘十玄门合行叙

    五教止观一乘十玄门合行叙

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 山公九原

    山公九原

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 杂艺

    杂艺

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 剡录

    剡录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 你的异能影后已上线

    你的异能影后已上线

    苏锦芸第一次见到御堇麟是在华娱传媒发起的一档选透节目,误以为他也是来参加选秀的少年。于是面对如此好看,又奶又萌的少年,她毫不犹豫的踮起脚尖,伸出爪子,来个了一摸头杀。“我看好你哦,等你出道后,我第一个做你的妈妈粉。”一边蹂躏着少年那一头浓密柔软的短发,苏锦芸一边笑眯眯的对少年说。御堇麟:“…”直到某日,她才知道,当初她对他的定义是多么的天真无邪。多数人都知苏锦芸是娱乐圈新进女神,有颜,有才,有演技。却不知她能掐会算,还会捉鬼。凡是和御堇麟打过交道的人都知此人邪魅危险,却不知他在某人面前装得像只毫无攻击力,只会卖萌的小奶狗。
  • 万古第一大盗

    万古第一大盗

    穿越异世界,成为了一个任人打骂的剑奴。于是他发愤图强,选择了一个相当不错,很有前途的职业。“打工是不可能打工的,这辈子都不可能打工的,做生意又不会,只能劫富济我,才能维持得了生活这样子……”“这个宗教,已有三千年的历史,囤积的财宝不计其数,我若能洗劫了这里,或许可以依靠洗劫来的财物资源,助我突破一个小境界!”林狗拍了拍脑袋,压下眼中那犹如饿狼般的目光,换上了一张憨厚无害的笑容,对身后一大帮志同道合的并肩子(弟兄们)高呼道:“小的们,亮青子(亮兵刃),盘它!!!”
  • 冥罗鬼判

    冥罗鬼判

    一开始张宇是要考试的,可是他太累了,导致睡了很久。隔壁班班长是个女的,很好看,在张宇刚睡醒没穿衣服时闯进去了。然后他顶着两个熊猫眼走出门,发现自己看不透美女的命数。但他知道有很多厉害的人能掩盖人的命数,难道这个女的很厉害?
  • 渡劫一万年

    渡劫一万年

    南唐末年,未尘战死沙场,被追封濮溢侯,其子未由风年幼,后被秦世麟收养,视如己出。未由风与苏眉从小定下婚约,由于未家没落,苏家对婚约闭口不谈,未由风再次来到长安,准备完成父亲的遗愿,却没有想到,皇帝已经下了圣旨,纳苏眉为苏妃。回到长安后的未由风,又遭挚友背叛,成了死囚。在一场又一次生死比武中,未由风终于走出了死牢,成功活了下来。得知养父被皇帝杀害。从此,未由风踏上了复仇之路。
  • 73号特工

    73号特工

    明国时期的间谍,阴差阳错下竟玩儿了个穿越,好吧,这个人人不爱的小姐身份她就收着了,不过这位先生,您能离她远点儿吗?
  • 星耀九天:纨绔王爷圣手妃

    星耀九天:纨绔王爷圣手妃

    她本血脉高贵,却沦为庶女,卑微如尘;她本心性良善,却屡被欺辱,沦为笑柄;一朝风起,素手纤华,锋芒之上,绝色天下!
  • 你的力量归我了

    你的力量归我了

    只要我的实力够强,天地任凭纵横!只要我的速度够快,乾坤任凭驰骋!因为我的背后,有一群大佬支撑。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 医手无双:废材小姐要逆天

    医手无双:废材小姐要逆天

    她,古武至尊,毒医怪才,却被十年相守的爱人算计,最终同归于尽,共赴黄泉。她,帝国将军府嫡出小姐,却天生废材体质,无法修炼,受尽世人欺辱。一夕生死,魂归暗暝。当曾经的废物成为绝世天才,夕颜狂傲归来,从今日起,这个世上,再也没有人可以欺辱莫夕颜!善,百倍还,恶,百倍偿……他,绝色的暗夜之王,身份神秘,冷血霸道,却独独对她宠爱无限。一场死亡追逐,从此,天上地下,生死相随。哪怕堕入地狱,我也甘之如饴。
  • 致我和梁先生的那些年

    致我和梁先生的那些年

    【留学归来的医生×网络小说作家】 初恋那些事情,青春的你和我,引起强烈共鸣,甜中微虐! “……是你!”梁寻一身白大褂,双手插兜,神色肃穆而冰冷,,声音像泡在寒冷的冰窖里一样,“你挺能耐啊,几年不见脸皮越来越厚了,看这种病不会找个女医生吗?”童安栾被说的小脸一红,缩在椅子上,梗着脖子,“……和你有什么关系,我愿意。”梁寻一皱眉,“行,我也是医生,我来。”童安栾打死也没想到自己只是来看个妇科病而已,竟然会遇到几年前暗恋的对象,也就是她的同桌——梁寻。她和梁寻曾经一起度过了高中最好的三年,友情参杂着爱情,谁都说不清。可高考前夕一场阴错阳差,自比两人再也没有见过。五年后再见,当初的毛头小子学霸已经摇身一变成了炙手可热的名医,而她只是一个小有名气的网络小说作家。再度重复,会擦出什么样的火花呢?你好,梁先生。再见,梁先生。ps:本文重高中时期开始到入社会,前期是回忆哦~温馨文。