登陆注册
5434500000032

第32章

Syllogisms which lead to impossible conclusions are similar to ostensive syllogisms; they also are formed by means of the consequents and antecedents of the terms in question. In both cases the same inquiry is involved. For what is proved ostensively may also be concluded syllogistically per impossibile by means of the same terms; and what is proved per impossibile may also be proved ostensively, e.g. that A belongs to none of the Es. For suppose A to belong to some E: then since B belongs to all A and A to some of the Es, B will belong to some of the Es: but it was assumed that it belongs to none. Again we may prove that A belongs to some E: for if A belonged to none of the Es, and E belongs to all G, A will belong to none of the Gs: but it was assumed to belong to all. Similarly with the other propositions requiring proof. The proof per impossibile will always and in all cases be from the consequents and antecedents of the terms in question. Whatever the problem the same inquiry is necessary whether one wishes to use an ostensive syllogism or a reduction to impossibility. For both the demonstrations start from the same terms, e.g. suppose it has been proved that A belongs to no E, because it turns out that otherwise B belongs to some of the Es and this is impossible-if now it is assumed that B belongs to no E and to all A, it is clear that A will belong to no E. Again if it has been proved by an ostensive syllogism that A belongs to no E, assume that A belongs to some E and it will be proved per impossibile to belong to no E. Similarly with the rest. In all cases it is necessary to find some common term other than the subjects of inquiry, to which the syllogism establishing the false conclusion may relate, so that if this premiss is converted, and the other remains as it is, the syllogism will be ostensive by means of the same terms. For the ostensive syllogism differs from the reductio ad impossibile in this: in the ostensive syllogism both remisses are laid down in accordance with the truth, in the reductio ad impossibile one of the premisses is assumed falsely.

These points will be made clearer by the sequel, when we discuss the reduction to impossibility: at present this much must be clear, that we must look to terms of the kinds mentioned whether we wish to use an ostensive syllogism or a reduction to impossibility. In the other hypothetical syllogisms, I mean those which proceed by substitution, or by positing a certain quality, the inquiry will be directed to the terms of the problem to be proved-not the terms of the original problem, but the new terms introduced; and the method of the inquiry will be the same as before. But we must consider and determine in how many ways hypothetical syllogisms are possible.

Each of the problems then can be proved in the manner described; but it is possible to establish some of them syllogistically in another way, e.g. universal problems by the inquiry which leads up to a particular conclusion, with the addition of an hypothesis. For if the Cs and the Gs should be identical, but E should be assumed to belong to the Gs only, then A would belong to every E: and again if the Ds and the Gs should be identical, but E should be predicated of the Gs only, it follows that A will belong to none of the Es.

Clearly then we must consider the matter in this way also. The method is the same whether the relation is necessary or possible.

For the inquiry will be the same, and the syllogism will proceed through terms arranged in the same order whether a possible or a pure proposition is proved. We must find in the case of possible relations, as well as terms that belong, terms which can belong though they actually do not: for we have proved that the syllogism which establishes a possible relation proceeds through these terms as well. Similarly also with the other modes of predication.

It is clear then from what has been said not only that all syllogisms can be formed in this way, but also that they cannot be formed in any other. For every syllogism has been proved to be formed through one of the aforementioned figures, and these cannot be composed through other terms than the consequents and antecedents of the terms in question: for from these we obtain the premisses and find the middle term. Consequently a syllogism cannot be formed by means of other terms.

同类推荐
  • 古今译经图纪续

    古今译经图纪续

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 竹间十日话

    竹间十日话

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • ANNA KARENINA

    ANNA KARENINA

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 明伦汇编人事典年齿部

    明伦汇编人事典年齿部

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • My Discovery of England

    My Discovery of England

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 重生绝宠田园妃

    重生绝宠田园妃

    飞鸟尽,良弓藏,狡兔死,走狗烹。上辈子,成功将大永朝文治武功最为出众,并且贤名远播的太子刺杀死的程悦终于完成了自己的使命,被自己最爱的人亲自捉拿归案。为祭祀太子,她被凌迟处死,受千刀万剐之刑。重生一世,她只想安安静静当一个有田有土有车有房的小农女。意外获得空间,却愕然发现,空间在手,皇子我有,这是怎么个状况。。。
  • 黑暗种族之猎人崛起

    黑暗种族之猎人崛起

    一个被后人渐渐忘却的群体,它只存在于传说,千年以来,他们销声匿迹,但是宿敌重现,他们亦重新归来。
  • 龙剑魔法与少年

    龙剑魔法与少年

    如果地狱和天堂接壤,神话会变成怎样?又有谁知道这个世界,究竟埋藏着多少秘密?十八岁生日那天,梦中有莫名的召唤响起,满天的星辰在燃烧,有恶龙张开遮天的双翼,骑士的大剑沾满鲜血。楚江河一觉醒来,推开门,此世界已经非彼世界。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 党员学党建(十九大报告学习版)

    党员学党建(十九大报告学习版)

    《党员学党建》紧扣时代的脉搏,突出主旋律,抓住广大党员关注的热点问题,结合新时期对党员的素质要求,从政治建设、思想建设、组织建设、作风建设、纪律建设、制度建设对党的宗旨、党的性质、党的路线方针和执政理念做了系统阐释。作为一种创新探索,作者力求把党建读物写得好看、好读,努力营造一种轻松愉快的党建学习阅读氛围。本书适合于各级党组织开展党员教育等各种学习活动,更是各级党组织开展“党员读书月”活动的理想读本。
  • 中国神话与民间传说

    中国神话与民间传说

    丰富多彩的神话与民间传说是远古历史的回音,真实地记录了我们民族在成长时期的瑰丽幻想、顽强抗争以及步履蹒跚的足迹。我们从各个时代的典籍中遴选了流传最广泛、影响最深远,最富于代表性的经典神话和传说故事,精心编写了这本《中国神话与民间传说》。内容系统全面,神话人物谱系清晰。同时,编者还选配了百余幅表现故事情节的精美插画,再现了故事中奇异、瑰丽的场景,将神话故事形象、逼真地呈现在读者面前,带领读者进入一个神奇绚烂的世界。
  • 快穿之晃眼的光

    快穿之晃眼的光

    温晃曾经说过这句话:“众星她的璀璨盖过月”她不服系统空间里宿主的光环,于是义无反顾的加入了反派系统空间。在主神一次次的猜忌与忌惮下,她与他展开了这场生死博弈。你以为我的恶趣味是故意拆散男女主?温晃有演示给主神看,什么叫故意拆散——你以为我的脑袋不足够清醒?温晃有自导自演自己的作品《什么叫清醒》——.......最后的最后,温晃疑惑的问道:“晃眼的光得是什么样子的光啊?”又自己回答道:“光好像生来都是晃眼的吧。”
  • 雪拥蓝关

    雪拥蓝关

    感动百万读者的爱情传奇!伶人往事至美情深,国剧宗师时代传奇,浩瀚动人京剧之美!《雪拥蓝关》未出先热,网上连载吸引百万读者热情追捧,媒体跟踪报道;中央电视台戏曲频道签约本书数字版权,并首度尝试在频道各线上平台连载本书内容,这也是央视戏曲频道**次合作纸书出版项目!小儿女的痴恋,在大时代风云中的身不由己,男儿间的情义,与国剧的华美水乳交融;爱情故事动人心弦,京剧之美惊心动魄……
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 依人顾陌生

    依人顾陌生

    一位名满世界的钢琴师,受人之托收了一个徒弟,从此,他成了一个保姆,满世界跟着自己徒弟,可是他徒弟身边有星辰似海的大哥,有从小出生入死的二哥,丝毫没有他的位置,甚至还被怀疑为间谍……从小在军区长得的孩子,无奈被拎回家拜了个师父,拜完了,她师父还总跟着她,在看过她一系列暴力行为后,只是淡淡地说,“今晚要上课,你多看看乐谱。”跨越两代人的爱恨纠葛,家国恩师,何去何从……