登陆注册
5434500000048

第48章

Whatever problems are proved in more than one figure, if they have been established in one figure by syllogism, can be reduced to another figure, e.g. a negative syllogism in the first figure can be reduced to the second, and a syllogism in the middle figure to the first, not all however but some only. The point will be clear in the sequel. If A belongs to no B, and B to all C, then A belongs to no C. Thus the first figure; but if the negative statement is converted, we shall have the middle figure. For B belongs to no A, and to all C. Similarly if the syllogism is not universal but particular, e.g. if A belongs to no B, and B to some C. Convert the negative statement and you will have the middle figure.

The universal syllogisms in the second figure can be reduced to the first, but only one of the two particular syllogisms. Let A belong to no B and to all C. Convert the negative statement, and you will have the first figure. For B will belong to no A and A to all C. But if the affirmative statement concerns B, and the negative C, C must be made first term. For C belongs to no A, and A to all B: therefore C belongs to no B. B then belongs to no C: for the negative statement is convertible.

But if the syllogism is particular, whenever the negative statement concerns the major extreme, reduction to the first figure will be possible, e.g. if A belongs to no B and to some C: convert the negative statement and you will have the first figure. For B will belong to no A and A to some C. But when the affirmative statement concerns the major extreme, no resolution will be possible, e.g. if A belongs to all B, but not to all C: for the statement AB does not admit of conversion, nor would there be a syllogism if it did.

Again syllogisms in the third figure cannot all be resolved into the first, though all syllogisms in the first figure can be resolved into the third. Let A belong to all B and B to some C. Since the particular affirmative is convertible, C will belong to some B: but A belonged to all B: so that the third figure is formed. Similarly if the syllogism is negative: for the particular affirmative is convertible: therefore A will belong to no B, and to some C.

Of the syllogisms in the last figure one only cannot be resolved into the first, viz. when the negative statement is not universal: all the rest can be resolved. Let A and B be affirmed of all C: then C can be converted partially with either A or B: C then belongs to some B.

Consequently we shall get the first figure, if A belongs to all C, and C to some of the Bs. If A belongs to all C and B to some C, the argument is the same: for B is convertible in reference to C. But if B belongs to all C and A to some C, the first term must be B: for B belongs to all C, and C to some A, therefore B belongs to some A.

But since the particular statement is convertible, A will belong to some B. If the syllogism is negative, when the terms are universal we must take them in a similar way. Let B belong to all C, and A to no C: then C will belong to some B, and A to no C; and so C will be middle term. Similarly if the negative statement is universal, the affirmative particular: for A will belong to no C, and C to some of the Bs. But if the negative statement is particular, no resolution will be possible, e.g. if B belongs to all C, and A not belong to some C: convert the statement BC and both premisses will be particular.

It is clear that in order to resolve the figures into one another the premiss which concerns the minor extreme must be converted in both the figures: for when this premiss is altered, the transition to the other figure is made.

One of the syllogisms in the middle figure can, the other cannot, be resolved into the third figure. Whenever the universal statement is negative, resolution is possible. For if A belongs to no B and to some C, both B and C alike are convertible in relation to A, so that B belongs to no A and C to some A. A therefore is middle term. But when A belongs to all B, and not to some C, resolution will not be possible: for neither of the premisses is universal after conversion.

Syllogisms in the third figure can be resolved into the middle figure, whenever the negative statement is universal, e.g. if A belongs to no C, and B to some or all C. For C then will belong to no A and to some B. But if the negative statement is particular, no resolution will be possible: for the particular negative does not admit of conversion.

It is clear then that the same syllogisms cannot be resolved in these figures which could not be resolved into the first figure, and that when syllogisms are reduced to the first figure these alone are confirmed by reduction to what is impossible.

It is clear from what we have said how we ought to reduce syllogisms, and that the figures may be resolved into one another.

同类推荐
  • 大小诸证方论

    大小诸证方论

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 闲二首

    闲二首

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 乐天以愚相访沽酒致

    乐天以愚相访沽酒致

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 佛说长者法志妻经

    佛说长者法志妻经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 骨相篇

    骨相篇

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 情咒:情不可恕

    情咒:情不可恕

    千年的记忆苏醒之际,万年的心痛,卿该如何面对?万年之后所有的一切都不复存在,心中的人不在了,不愿面对的人却依旧在身边--迷茫的寻找,无力的挣扎,子矜,你到底在哪?失去记忆的子矜就算找到了会跟卿走吗?他们真的可以在一起吗?天帝会放过他们吗?--情节虚构,请勿模仿
  • 锐读(第14期·悬疑新主张)

    锐读(第14期·悬疑新主张)

    悬疑作品是一个社会的窗子,我们站在窗外,窥视里面的喜怒哀乐。 用有意思的悬疑作品打动人。
  • 航展惊魂

    航展惊魂

    中国两架最新型飞机将赴新加坡参加国际航空展,引起某国的极大恐慌和嫉妒,竟丧心病狂准备在途中实施偷袭破坏,一场突如其来的战斗,就此惊心动魄地展开……新加坡宣布举办第18届国际航空展的第二天,新华社发出一则消息称,中国将派出新研制的“凤凰260”宽体大型客机及“歼25”多用途隐形战斗机参展。
  • 月高高心寥寥

    月高高心寥寥

    黑夜里,是什么在漂泊无依?它们在你看不见的地方流离浪荡、嬉笑歌哭,它们的不甘和幽怨该如何安放,它们又该如何得到解脱,究竟人恶还是鬼恶?
  • 白桦树小屋

    白桦树小屋

    边防连的战友们为了不让小雪伤心,隐瞒了真相,编织了一个真实的谎言,为美丽的小雪盖了一座白桦树小屋……在充满真情和爱心的小屋里,围绕着新娘小雪,边防连的官兵和饲养的军犬、猪、猫等“宠物”之间发生了一系列像童话一样美丽动人的故事。庞天舒所著的《白桦树小屋》深入浅出,迤逦凄婉地演泽了边防军人的生活和惊心动魄的爱情,是军事小说走向人性与自然的成功探索。
  • 蜀汉纪

    蜀汉纪

    我是刘诞刘诞侬晓得哇?(不晓得。)好吧,可能你对我不是很熟悉,但是我的哥哥你应该认识。我大哥名叫刘范,是个不得了的人物,官拜左中郎将,在朝中那也算的上是数一数二的……(刘范?也不晓得。)好吧,好吧,既然不晓得,那我就不说我大哥了。我还有三弟,三弟名为刘瑁字叔玉,在京城也算……(不用再说了,也不晓得。)好吧好吧,幸好我还有一个比较有名的弟弟,叫做刘璋!(哦?刘璋?)没错,就是你脑海里的那个刘璋。(我脑海里没有刘璋啊喂!)这里,是汉末后世还给它取了一个独立的名字——三国这是个老套的故事,这是一个离奇的故事且看刘仲玉将会在这个时代产生怎样的纠葛开始怎样的生活
  • 修仙小1

    修仙小1

    因为一纸婚约,误入军营,幸得高人指点,踏上修仙之路,并不知自己仅仅只是别人培养的一颗棋子,误食妖丹,仙魔同体,竟成决定棋局之人!
  • 穿越霸王花(4):凤冠传奇

    穿越霸王花(4):凤冠传奇

    恶毒的诅咒把她送回了古代——自私而野蛮的皇帝,砸碎了她瑰丽的初恋;追随而至的两世仇人,为她精心设下一个又一个的死亡陷阱;而那个莫名出现的男人,又和她究竟有着怎样的宿命姻缘?面对这步步惊魂的命运轮回之旅,她不肯屈服,誓要战胜诅咒,成为主宰自己命运的主人,于是,她反出皇宫,独闯敌巢,统率大军,抵抗外敌。她一次次战胜了磨难,却一次次错过了命定的情缘,而当他们终于拥抱在一起的时候,诅咒再度降临。
  • 佛顶最胜陀罗尼经

    佛顶最胜陀罗尼经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 元曲精品鉴赏(中华古文化经典丛书)

    元曲精品鉴赏(中华古文化经典丛书)

    《中华古文化经典丛书》是一部全面细致介绍中国古文化的书籍,它综合了中国各个时期、各个地区种类繁多的各类型文化,就其历史起源、发展走向、文化特色、重大影响,以及当时人们的生活状况、人文风俗、语言特点、宗教信仰等方面进行描写。《元曲精品鉴赏》是此丛书中的一本。元曲是中华民族灿烂文化宝库中的一朵奇葩,它在思想内容和艺术成就上都体现了独有的特色,和唐诗、宋词、明清小说鼎足并举,成为我国文学史上一座重要的里程碑。本文搜集大量元曲,并且针对每一首元曲进行赏析。包括《元好问——卜居外家东园》、《王和卿——咏大蝴蝶》、《〔南吕〕金字经——卢挚》等。