登陆注册
2813700000017

第17章 生命科学,从1946年到现在(4)

死亡并不即刻到来,事实上从感染病毒到发展成艾滋病,可能要经过数年或者更长时间。在此期间,感染者可能是一个不为人知的病毒携带者。在20世纪90年代初,有一个估计数字是美国感染艾滋病病毒的人在100万至150万之间。一旦艾滋病发作,疾病的进程有可能缓慢变化,但最终结果总是一样的:由于免疫系统虚弱,人很容易得病,在与偶得的疾病反复较量之后终于死亡。据报道,1981年到1991年之间美国有19万例艾滋病患者,其中12万人死亡。到2000年,全世界感染艾滋病病毒的人数达到3470万。世界卫生组织报告,在1981年到2000年底之间,死于艾滋病的人数达2180万。

是什么使得艾滋病1型病毒如此不寻常地具有致死效应?因为它把自己伪装成身体的一部分,然后使免疫系统的关键组成部分T细胞无法识别。要找寻一种治疗方法特别难,因为HIV病毒轻易就会“变脸”,从而产生抗药性。然后,变异的新病毒继续兴风作浪,并以新的形式复制,不受药物影响,也不被人体免疫系统识别。

有好几种药剂已经被发现,对疾病可以起到延缓进程的作用,其中包括迭氮胸腺嘧啶核苷(AZT)和双脱氧肌苷(ddI),尽管它们具有许多毒副作用;人们迫切想要攻克这一顽症,但是工作极为艰巨。艾滋病病毒比起大多数流感病毒来,变异要快1000多倍,要研制一种战胜它的疫苗或者药剂,正如有些科学家说的,“就像试图击中活动靶子一样”。再有,大多数疾病的治疗都试图激励人体本身的免疫系统来取得胜利。但是在艾滋病中,免疫系统正是受到攻击的系统。然而,1993年2月,在实验室里研究艾滋病的研究者发现,某些药剂的组合,特别是一种特殊的三重组合,对病毒产生了有希望的效应。尽管病毒还能够像往常那样变异,以便产生抗药性,但是新型病毒有时却不能复制。这就意味着,一旦特定的病毒寿终正寝,它将绝后。如果这一过程不断重复,经过较长的时间并且一直持续下去,病毒最终有可能在它的宿主体内死亡,战争就会胜利。但是到了10月就发现,这一三重组合策略并不总是有效。有时病毒会抵制复合药剂,从而继续生存和复制。事实上,在其他研究者所做的实验中,这一策略并不奏效;变异的病毒看来还能够生存,继续它的正常生命周期。所以,三重组合的药剂并非病毒失效的必要条件。没有找到任何可用疫苗,尽管做出了种种努力,但前景不容乐观。正如一位研究者所警告的,由于这一病毒的特性,疫苗可能事与愿违,把免疫系统本身误认为有待攻克的病毒。因此至今还没有治疗艾滋病的魔弹。

迄今为止,艾滋病依然是人类抵御疾病的一场巨大失败。在医学领域,由于一个世纪来科学的杰出成果,我们盼来了磺胺类药物、青霉素和各种免疫接种,从而享受到历史上从未有过的高寿和多育的人生。我们能否找到一种方法来战胜这一微小而有非凡变异能力的致命杀手?只有时间可以做出回答。

与此同时,我们抵御艾滋病的最好方法就是通过教育。如果我们能够成功地避免艾滋病毒从一个宿主传到另一个宿主,最终它将不再流行。这一计划的关键是要让每个人都知道,没有保护的性关系(“不安全的性行为”)和静脉注射吸毒(特别是共用针头)是极其危险的行为。这是三种最容易传播艾滋病病毒途径中的两种。(第三种途径是分娩时从母亲传给婴儿。)研究已经表明,一旦传染上了艾滋病病毒,宿主最终将会发展成艾滋病,因此而死亡。但是,只要避免危险行为,每一个人(除了受感染的母亲出生的孩子)都可以保护自己。

对于无数饱受折磨的个体来说,他们依然怀有治愈的渴望。还有更多的人可能在未来的岁月里遭遇这种疾病,因此对于有效的疫苗接种和治疗方法的祈求从未终止。研究仍在进行中。

遗传工程的诞生

尽管艾滋病研究领域进展缓慢,但其他领域的重大成果却是层出不穷。20世纪中叶,克里克和沃森在分子水平上做出的突破,大体上与其他生物学家的研究齐头并进,这类研究针对的是一类有趣的特殊病毒,它们专门攻击细菌。这类病毒的名字叫做噬菌体(“细菌的食客”),它们有着非同寻常的特性,最终导致发现把遗传物质从一种生物体转移到另一种生物体的途径。这些机制的揭秘和新技术的结合,导致出现了这一世纪最令人称奇的一项科学进展——遗传工程。

不过研究起始于细菌而不是它们的寄生物。莱德伯格(Joshua Lederberg,1925—2008)在1952年开创了这条途径。他注意到细菌通过配对结合,过程类似于复杂有机体的性交,来交换遗传物质。莱德伯格还观测到有两种不同的类型,他称之为M和F。F菌株都含有他称为质粒的一种物体,会把质粒传递给M细菌。后来证明,质粒含有遗传物质,这是海斯(William Hayes,1918—1994)第二年发现的。几年前刚刚搞清楚遗传密码是由DNA携带的;质粒似乎是一种环状DNA,从细菌染色体的DNA中游离出来。

这一发现为解决医药领域中正在面临的问题提供了立竿见影的帮助。20世纪30年代和40年代发展起来的磺胺药物和抗生素已经运用多年,许多细菌对它们产生了抗药性——难以遏制的流行病又开始卷土重来,特别是在医院里。1959年,有一组日本科学家发现,抗药性的基因是由质粒携带的,一个细菌可以有数个质粒复制件,然后从一个细菌传递给另一个。如果把少量具抗药性的细菌引进一个群体,就会使整个群体迅速地也具有同样的抗药性。

与此同时,早在1946年,正独立对噬菌体进行研究的德尔布吕克和赫尔希发现,来自不同噬菌体的基因可以自发重组。瑞士微生物学家亚伯(Werner Arber,1929—)对这一奇异的突变过程进行了详细观察,做出了惊人的发现。细菌在与敌对的噬菌体作战时采取一个有效的方法:它们用一种酶分解噬菌体的DNA并限制噬菌体的生长,这种酶后来就叫“限制酶”。噬菌体不再活跃,于是细菌继续自行其是。

到了1968年,亚伯已经可以把限制酶定位,并发现它仅位于那些含有特定核苷酸序列的DNA分子上,这些核苷酸序列恰是噬菌体的特征。

亚伯密切观察内在的机制:被分解的噬菌体基因会发生重组。他发现,一旦分裂,DNA的分裂端就是“黏性的”。也就是说,如果细菌的限制酶不在场,不去阻止重组的发生,则在同一位点已被分裂的不同基因将会重组,如果把它们放在一起的话。重组DNA——也就是说,来自于不同物种的DNA碎片通过人工方法而合并——的诞生呼之欲出。

接踵而来的是,1969年贝克维斯(Jonathan Beckwith)及其合作者第一次成功地分离出了单个基因,这是细菌中与糖的新陈代谢有关的一种基因。看来一切已准备就绪。

20世纪70年代初,美国微生物学家内森斯(Daniel Nathans,1928—1999)和史密斯(Hamilton Smith,1931—)拿过接力棒,开始培育各种限制酶,它们能够在特殊位点上切割DNA。1970年史密斯发现一种酶,能够在一个特殊位置上切断DNA分子。内森斯进一步研究这个过程,找到了制备各种核酸片段的方法,研究了它们的特性和传递遗传信息的能力。现在研究者真正走上了重组DNA之路,这就是说,先是分离出核酸,然后使它们以不同形式重组。史密斯和内森斯由于他们的划时代发现而荣获1978年诺贝尔生理学或医学奖。

1973年柯恩和波亚尔(Herbert Wayne Boyer,1936—)把两种技术——一种技术是把限制酶定位于质粒,另一种技术是分离特殊基因——结合在一起,又导致了一个非凡的突破,这就是所谓的遗传工程。他们先是切断从大肠杆菌中发现的质粒,然后把来自不同细菌的基因插入质粒的缺口。再把质粒放回大肠杆菌,于是细菌又像平常那样复制,但复制得到的细菌却变换成了别的细菌。这是一个令人惊奇、功力无比的绝技。其他科学家在随后几个月里纷纷投入研究,他们用其他物种重复这一过程,把果蝇和青蛙的基因插入大肠杆菌。

但并不是每个人都认为这是好主意。1974年伯格(Paul Berg,1926—)和其他生物学家在美国国家科学院的支持下召开了一个会议,拟定了一份指导方针,要求遗传工程应该受到严密控制。从那时起,双方的关系一直处于紧张之中,一方希望进一步探讨遗传工程;另一方则担心会产生不良后果并希望对它有所控制。

但是到了20世纪80年代,遗传工程师成功地生产了好几种特殊的蛋白质,满足了某些病人的需要,如人体生长激素、胰岛素、白细胞介素-2和血液凝固溶解剂。它们还可用来生产乙肝疫苗和改善器官移植受体组织的性能。这些产品大多数是在大型发酵罐里生产的,处于严格控制的环境中,这样一来,对这类遗传工程的反对意见有所减少。再有,遗传工程已经成功地给某些遗传性疾病,例如亨廷顿氏病或杜兴肌营养不良症,定位了基因标志。

1952年,当美国生物学家布里格斯(Robert William Briggs,1911—1983)和金(ThomasJ.King,1921—2000)成功地实施了一项精细的手术时,一个新的探索领域从此打开。他们移走了一个细胞的核,核里含有全部的遗传物质,取而代之的是另一个细胞的核,这就是被称为核移植过程的诞生。

15年后,英国生物学家古尔顿(John Bertrand Gurdon,1933—)在1962年成功地克隆了一个脊椎动物,这是以前从未有过的壮举,他从南非有爪树蛙的肠细胞中取出核,把它移植到同一物种未受精的卵(卵细胞)中。于是,一个新的、完全正常的个体开始发育了——原初意义上的克隆。

从古尔顿的突破,到其他人于20世纪70年代在基因和染色体水平上的突破,对生物体在最基本的水平上如何发挥作用的问题取得了新的认识。

当科学家对基因和DNA了解更多时,在遗传控制方面就有了各种各样的新前景。控制遗传特征的愿望自古有之——只举几个例子,种小麦的农民、马匹的驯养者和养鸽爱好者,多少个世纪来都通过杂交来得到所需的动植物品种。然而现在,围绕基因水平的干预——所有类型的遗传工程都是如此——成了有争议的课题。转基因食品带来了安全性问题,转基因种子的不必要播撒带来了环境安全的担忧。随着非洲国家拒绝廉价的转基因食品——因为他们担心,进口转基因种子会污染当地农作物从而失去他们在欧洲的农产品市场——冲突就成了一个政治性难题。

随着人类基因组工程的完成,另一条通向遗传工程的途径——干细胞研究和基因治疗——有了更完备的知识基础。基因治疗的着眼点在于处理或治疗已经确认的近3000种遗传病症。对于许多患者来说,如果没有治疗,将会终生处于痛苦之中,并且常在年轻时就会死去。尽管现在基因治疗还没有被认可为医学治疗,不能用于诊治疾病,但是它正在进行必要的临床测试和安全及功效试验。科学家都很乐观,认为它终将是治疗遗传性疾病的有力新工具。

但是,干细胞研究则面临着伦理争议,因为干细胞(从尚未分化的胚胎中取出的细胞)极为适宜于遗传工程目的,这时胚胎就成了这一过程中的牺牲品。初生胚胎尽管非常幼小,某些团体还是把它看成是个体生命,因此他们认为,一旦进行干细胞研究,个体生命就失去了。在核移植技术运用领域,也遭遇伦理问题,当细胞核被放入一个已经去核的卵中时,在某些团体看来,一个潜在的生命已经遭到破坏。

这就是为什么一只名叫多莉的绵羊在1997年出生时成为如此轰动新闻的原因。

一只著名母羊的生与死

1997年2月,苏格兰爱丁堡市附近罗斯林研究所的研究者宣布了一件新闻引起了巨大的反响,他们宣布一只名叫多莉的绵羊去年夏天出生,正在享受健康的生活。但是这只年轻的母羊非同寻常。它是母亲的克隆。它的母亲是一头6岁的成年羊。这是第一例成功地由体细胞克隆而成的哺乳动物——不是从干细胞。科学家曾经多次尝试运用体细胞克隆哺乳动物,但都没有成功,许多人认为它做不成。多莉正好说明他们锗了。

世界上第一只成功地利用成年细胞克隆的绵羊多莉。在这里显示的多莉正下它的羊羔邦妮在一起。邦妮是自然受孕和分娩的,完全正常。不幸的是,1996年出生的多莉只有6年的短暂寿命。无可否认,克隆不是正常的生殖过程。尽管多莉看上去完全正常,它却不是来自正常的卵,也没有精子参与。多莉只是它母亲的复制品,它母亲提供了DNA。多莉没有父亲。这一事件的诡异色彩使一些人不安,但是也有许多人充满信心,认为克隆不仅可行而且安全,并且不涉及胚胎干细胞的运用,这一技术有可能用在人的身上。多莉在各方面都是一只完全正常的绵羊——决不是拼凑糅合而成。1998年,它和一只威尔士山羊正常交配,生下了邦妮,一只正常的6.7磅重的羊羔。

令人悲哀的是,多莉于2003年2月14日6岁时因呼吸道疾病而死去。科学家认为,它的早死是由于快速老化造成的,因为它的生命开始于成年细胞,老化过程已经在其中进行了好几年。然而,罗斯林研究所的研究者们在胚胎学家维尔穆特(Ian Wilmut,1944—)的领导下,已经做成了不可能之事。也就是说,他们做成了当时所有人都认为是不可能成功的事情。其他研究者曾经试过,但都以失败告终。

于是,到了1997年,遗传工程及其伦理问题突然成为众矢之的。随着多莉的诞生,许多“如果一怎样”的问题立刻变得更为真实。今天仍然众说纷纭——不仅针对克隆、它的正负效应以及未来影响,而且还涉及整个遗传工程领域。争论围绕着遗传工程的方方面面。人们关注遗传工程用于植物、食物、病毒、濒危物种和人体治疗等方面问题。多莉戏剧般地第一次把这些问题和争论带到了公众的面前。

同类推荐
  • 三十六计(国学启蒙书系列)

    三十六计(国学启蒙书系列)

    《三十六计》是我国古代兵家计谋的总结和军事谋略学的宝贵遗产,为便于人们熟记这三十六条妙计,有位学者在三十六计中每取一字,依序组成一首诗:金玉檀公策,借以擒劫贼,鱼蛇海间笑,羊虎桃桑隔,树暗走痴故,釜空苦远客,屋梁有美尸,击魏连伐虢。《三十六计(双色注音版)》是“国学启蒙书系列”中的一册。在《三十六计(双色注音版)》一书中,编者韩震等人采用活泼插图的表现方式,编选相关的精彩故事,融知识性与趣味性于一体,让青少年在诵读中轻松快乐地亲近《三十六计》,更直观、真切地感受《三十六计》的魅力,在阅读中积淀文化底蕴,培养良好道德品质,从而受益一生。
  • 哥们你为啥流泪

    哥们你为啥流泪

    朱元和左丫丫,本是一班同学。一个是淘气包,一个是大班长。朱元淘气不假,玩蚂蚁,搞恶作剧,但他们的班主任老师,明明是在很多的时候,偏袒着左丫丫吗?后来的一天,当朱元终于知道了这个感人故事后面的秘密,他和全班的同学都在痛哭不已……思想碰撞、情感火花、生活趣味等等,都在这本书里一一展现。这是一本不容错过的好书。
  • 做一个品学兼优的女生:写给女孩的完美性格课

    做一个品学兼优的女生:写给女孩的完美性格课

    造善良、美好的性格,有助于女孩养成良好的学习、生活习惯,帮助女孩积累丰富的知识,提高独立生活的能力,让女孩具有健康、乐观的心态。《做一个品学兼优的女生(写给女孩的完美性格课美绘本)/61成长书架》》精选《少先队小干部》杂志“性格讲堂”栏目的优秀内容编辑成书,让女孩改掉坏习惯,培养好性格,更自信、更乐观地面对生活。
  • 大童话家朱奎童话·记忆超强的大熊猫温任先生

    大童话家朱奎童话·记忆超强的大熊猫温任先生

    可爱的大熊猫温任先生和太太因担心自己的孩子是残疾而四处寻问,终于得知小孩子是正常的,这时却有一群听说小大熊猫是个残疾儿的“好心人”接连上门,打算将其收养,更可笑的是温任先生始终记不住孩子的名字。
  • 奇幻宇宙大探秘

    奇幻宇宙大探秘

    一本新潮、超炫、酷辣的探索书!一次炫丽夺目、时尚无敌的谜之旅!一堂奇妙鲜活、充满趣味的科学课!一份世界优秀科学家给孩子的最新报告!这里飞翔着让孩子耳目一新的奥秘、知识、惊奇和想象,以超级趣味的形式和无法抵挡的吸引力,瞬间点燃孩子内心好奇心的火山,让求知欲、创新力、探索力、思考力喷薄而出!本书是宇宙卷,讲述包括读者感兴趣的诸如星座、ufo、外星人等百科知识。
热门推荐
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 悟道通天

    悟道通天

    无敌于一方大世界的两位天才,姜天痕与萧杭,双双联手对抗天道,无意间触及某些秘辛,不料被无名大手镇杀。没想到姜天痕并没有死,并以少年姿态重生在了一个陌生的世界,他能否重回巅峰?甚至更强?无名大手究竟是谁?找寻前世的真相? 而这一切的故事且看我向你娓娓道来。
  • 流离的萤火爱情

    流离的萤火爱情

    抬头看到的就是他那双孤傲的眼睛,散发着无数的寒气,让人不寒而栗,那张脸简直无懈可击,与哥哥相比似乎更胜一筹,但是他满脸的高傲和不屑,瞬间拒人于千里之外。那个冰山男依旧惜字如金,没有表情,我开始有些怀疑,老哥是不是认错人啦?呼呼,不理他们啦,走咯“答应我一个要求!”说得这么爽快?是早有预谋吗?可是不应该,总不至于他是策划者吧“要求?行,但是你不可以说…”委屈啊,莫名其妙地要答应冰山男一个要求。“不管如何,你都要信我!”那是你对我的乞求吗?一次次的错过,一次次的误会,他们之间是否经得起时间的考验?可爱善良的韩雪柔能够等到幸福钟声响起吗?面对昔日的男友、今时的未婚夫,她该如何抉择?求收藏,求推荐,求订阅,嘻嘻,我会再接再厉的~~~推荐——http://m.pgsk.com/a/450433/《邪魅总裁:女人,乖乖躺着!》推荐新作温馨治愈系列:听说,爱情回来过。http://m.pgsk.com/a/702512/
  • 大梦回仙界

    大梦回仙界

    陈小凡一直有一个奇怪的现象,他一直都解释不清楚这到这底是怎么回事,每当他睡着后就会进入另一个修仙世界,与其说是梦不如说是进入了另一个真实世界,这?难道说我睡着了就会穿越到我的前世!他不敢相信!一定是我平时看小说多了入了魔?
  • 总裁大人,超难哄!

    总裁大人,超难哄!

    重生前,莫笙笙是个走路生风,自带BGM的女人!重生后,她是当红女明星,虽然受尽万千团宠,但战斗力却一夜之间归了零!没有金手指也没有开挂的人生就算了,还被总裁大人威胁!“宝宝,结婚解一下?让你不费吹灰之力走上人生巅峰的那种。”“老娘不稀……”“嗯?”霆爷眉梢一挑,眼角划过一道凛冽的寒芒。“哈哈哈不,不错的主意呢!”【男女主混合双强,智商在线,不爽不要钱,无狗血堕胎误会!】
  • 剑道狂尊

    剑道狂尊

    一次突如其来的穿越,改变了宅男叶尘的生活。不一样的世界,不一样的朋友,家人,兄弟,恋人,应该如何处之?新的开始,剑道修行是否会是他突破自我的契机?看我冲破命运的枷锁扼住时光的咽喉,叫他们通通的屈服于我的威严之下!
  • 十亿网友闯大明

    十亿网友闯大明

    欲望这东西,有人说坏,也有人说好。说他坏,因为它是一切祸乱的根源;说他好,如果不是欲望……谁能以人臣之贱而代君王之贵?一次坠楼,命留住了,却摔出了精神分裂——魂魄一分为二,一部分残留在现代社会,另一部分却穿越到明朝一名教书先生身上。且看一名寻常教书先生,如何在十亿网友的帮助下一步步坐上龙椅。
  • 被男神罩着的日子

    被男神罩着的日子

    某年仲夏,正值中考的乡村少女王梨花倒霉地错过了中考,更倒霉而让她没的选择的是顺了母命进城当了一名小小的修布工人。“你上学期预考分数超过重点高中线那又怎么样!你爸腿受伤就等于半瘫痪,你还有妹妹和弟弟要我操心呢,难道你这个老大闺女也要让我不省心吗?”乡重点初中就在距离王梨花家骑车十五分钟的路程内,而那个生了她不怎么善待她的懒惰妈故意拉着她进了深山去拾头发菜把中考硬生生地给耽误了。在王家是母系权威,虽然这个当妈的没有什么本事。即使是王梨花性子倔,因为中考错过而不吃不喝三天,甚至跑着跳河寻死偏偏那条河很浅她没死成还回来被王母打的生不如死。“我想念高中……”王梨花心里默念了很多遍的话怎么也没有想到有人对她回应了。“我的生活能力供你上个高中绰绰有余,但你答应我,要对你自己未来好好地负责。”说这话的人是牟志远,王梨花修布的工厂对面艺术学院的美术系男神。牟志远一个城市大学生,家境不错,个人谋生能力也强,那些年一他是怎么排除外人非议往返城乡面见王梨花的不重要。重要的是,二十年后实力派老戏骨牟志远身边千帆过尽之后,在他身后挽着他一起出席华丽盛会的正是当年那个被他资助长成的女孩王梨花。
  • 大天尊

    大天尊

    一场玄黄劫火,毁灭了无尽世界,三千元神降世,选择继承者,十万天魔创世,斩青帝之躯,化建木,立无上武道界。十年前的异变,十年后的延续,杀劫起于青萍之末,一切从云池山中开始!山河动荡一拳镇压,看一本两百文钱的尧龙大典,练出天下最勇猛无畏之拳,镇压一切!
  • 盛虞

    盛虞

    寂寞的一颗星,去追逐另一颗寂寞星星的故事。