登陆注册
3488200000021

第21章 越走越远,天涯无际没有边(5)

恒星世界中有庞大的“巨人”,也有矮小的“侏儒”。夏夜出现在南方星空中的天蝎座里那颗大红星(心宿二),半径为太阳的600倍,而北天中的仙王座W星的半径更大,约为太阳的1600倍。还有一个“巨人”(HR237号)是目前已知的最大的恒星,它的半径为太阳的1800倍!

恒星中的侏儒,过去以为是白矮星,即天狼星的暗伴星,它的半径只有太阳半径的千分之七,约为5081千米,比地球还小。近年来发现的中子星,却是更小的恒星。据估计,中子星的半径约为10千米。

按照恒星的质量与体积,可以计算出恒星的平均密度。显然,那些质量不大而体积庞大的星,它的平均密度就一定很小。有的甚至比我们实验室中能达到的“真空”还稀薄。相反,有的星的平均密度却很大。例如白矮星的平均密度为1立方厘米约10吨。而中子星上的物质,1立方厘米重达1亿吨以上!

4.恒星有明有暗

夜晚看星的人,首先就会发现恒星的亮度是不一样的,有的明亮,有的暗弱。

早在公元前150年左右,希腊的天文学家伊巴谷就将肉眼可见的星星划分为六个等级,最亮的星叫“一等星”,比一等星暗些的叫二等星,依此类推,最暗的星叫“六等星”。当然,这种单凭肉眼来划分和定出的等级是不很精确的。后来,人们依据视觉规律,用仪器测定出,一等星比六等星要亮100倍。因此求出,星等每差一等,亮度相差大约为2.5倍。例如牛郎星(天鹰座a)为一等星,它比二等星北极星(小熊座a)亮约2.5倍。比牛郎星更亮的星,如织女星,它的星等为0等,比牛郎星要亮2.5倍。比0等更亮的星,星等为负数,如天狼星为-1.45等,它是整个天空中最亮的恒星。

这样定的星星亮度是“视亮度”,即肉眼看见的亮度。根据视亮度定出的星等叫作“视星等”。星星越亮,它的视星等越小。肉眼可见的最暗星等可达6.5等。用望远镜观看,可以看到6等以下的更暗的星。

但是,视星等不能反映出恒星的真实发光本领,即光度。要想知道恒星的光度,就必须先知道这颗星的距离。

假设有两支一样亮的蜡烛,如果将一支移至100米外,你再看它就成为萤火虫那么亮了,再远些就看不到了。可见,要比较恒星的真正的亮度,就必须将恒星“移”至同等距离上。

天文学上选取一个标准距离来比较恒星的光度。这距离是10个秒差距(32.6光年)。恒星在这个标准距离处的亮度,称为这颗恒星的“绝对星等”(通常用大写M来表示)。绝对星等与视星等(以小写m表示)有一个联系的公式。设距离以r表示(单位用秒差距),则有:

M=m+5-5logr,式中log为“对数”的代号。

全天最亮的天狼星(大犬座)的距离为2.7秒差距,视星等为m=-1.45,那它的绝对星等M为:

M=-1+45+5=510g2.7=1.40等。

我们太阳的视星等为-26.7等,如果将太阳移至10秒差距远处,它就成为一颗五等星(M=+4.8),肉眼刚好见到。

恒星的光度,常以太阳光度为单位。比如牛郎星(天鹰座a)比太阳亮约10倍,而织女星(天琴座)比太阳亮约54倍。

光度小的恒星称为“矮星”,光度大的恒星称为“巨星”。通常把绝对星等在+9等左右的恒星称为“矮星”,绝对星等在-2等左右的恒星称为“巨星”,绝对星等-4等以上的恒星称为“超巨星”。我们的太阳是属于“矮星”的家族。

恒星的光度相差非常大。目前已知的最亮恒星是天蝎座(音姚塔),它的绝对星等为-8.4,光度是太阳光度的19万多倍。恒星中最暗的是亨利·德雷伯星表(HD)中编号为180617(双星)的伴星VB10,光度仅为太阳光度的300万分之一。如果将最亮星比作一个大探照灯,那么最暗的星光就是一只萤火虫尾巴上的一点光亮了。

5.恒星的不同颜色

仔细观察星空的人,可以发现星星是有颜色的。有的发红,有的发蓝,有的发白,有的发黄,真是五颜六色,美丽极了!

大家所熟悉的牛郎星、织女星为白色的,心宿二(天蝎座a)为红色的,五车二(御夫座a)为黄色的,而天狼星则发蓝色的光芒。

恒星颜色上的差别,显示出它们表面温度的高低不同。我们试着加热一块铁片,当温度不太高时,铁片发红色;温度愈高,铁片就由红变黄、变白;在温度很高时,铁片发出蓝光。由此经验,我们可以猜想,恒星的颜色不同是因为它们表面温度不同。

天文学上根据实验,测定出恒星表面的温度。蓝色的星,表面温度最高,约有2万多K;白色的星,表面温度为1万K左右;红色的星表面温度只有三四千K。恒星表面温度与颜色的关系,见下表所示:

表中的光谱类型是恒星分类上最重要的数据。

大家知道,太阳光是由七种颜色(红、橙、黄、绿、青、蓝、紫)的光组成的。雨后,正对太阳的方向上常出现七色的彩虹,那就是太阳光的反映。用一块三棱镜将太阳光分解成七色的色带称为太阳光谱。

应用三棱镜及其他光学镜片组成的一种仪器,叫作棱镜分光仪。天文学家用分光仪去观测和拍摄各个恒星的光谱,然后根据光谱的组成情况加以分类。按表面温度由高到低为序,通常将恒星光谱分为O、B、A、F、G、K、M以及R、N和S型。每个类型又按温度高低分为0~9共十种次型(有的没有十个次型)即:

早型

中间型

晚型

通常将O、B、A型星称为“早型星”,将K、M型星称为“晚型星”。其余称为“中间型星”。“早”、“晚”,最初人们以为是恒星形成的顺序,但后来发现早型星、晚型星并不代表恒星形成的早晚,但是习惯上仍保留上述称法。

恒星中有99%左右的星的光谱属于7个类型。余下的星体属于R、N和S型。R、N型星中含碳特别多,所以又称这类星为“碳星”。S型星类似于K型,但其中有重金属谱带。

早型星中温度很高,许多元素已电离化了,所以星体上大多是电离氢、电离氦。G型星中金属谱线很多。晚型星温度很低,星体上含有分子,如烃基分子(CH)和氰基分子(CN)等。

我们的太阳光谱为G2型。牛郎星光谱为A7,织女星谱为朋型。

6.恒星的寿命有多久

一切生物都有生、老、病、死,生生死死,总是永恒的。而无机物的恒星也有生死吗?

我们说,恒星世界也有“生死”过程,这当然是跟生物界的生命现象绝对不同的“生死”过程。我们只是借用这个名词而已。这样,才能来谈谈恒星的所谓“寿命”问题。

早在本世纪20年代,赫兹普隆(1873—1967)和罗素(1877—1957)提出恒星的光谱——光度图时,他们就设想,恒星是有不同年龄的。早期的恒星可能是冷的红巨星,后来经过收缩而升温,再经过黄白蓝星,最后成为红色的矮星。这个恒星演化过程的假说,提出了恒星可能具有不同的年龄。

可是,测定恒星的年龄是相当困难的。但人们还是提出了几个测定方法。

有一种方法是根据星团的演化特征来确定,另一种方法是放射性同位素法。

一个星团是一个集体。如果瓦解了,不再成为集体,那就不是星团了。因此,星团的年龄应当具有某个上限(即最大年龄)。星团成员是在银河系里运动着的,由于银河系里其他恒星,特别是银河系核心的引力作用,星团应当逐渐趋向瓦解。另外,星团内各星体本身也有运动(即“本动”)。如果各星本动方向不一致,就会发生碰撞,其结果是有些星离开了星团,因而加快了星团的瓦解过程。由此计算出,银河星团的寿命的数量级为108—109年,球状星团为1011—1012年。目前认为银河星团的年龄一般小于109年,球状星团的年龄在1010年(100亿年)以上。而老的球状星团的年龄在150亿年左右。

放射性同位素法,在测定地球的年龄和测定古树木的年龄中常常用到。它的原理是这样的:

以铀元素来看,铀有两种同位素:铀235与铀238(记为U235与U238),它们的半衰期分别为7亿年和45亿年。(半衰期是指放射性原子由于衰变而使数目减少到一半时,所经历的时间)U235的半衰期比U238的短,所以U235比U238更快地蜕变掉。这就形成地球上的铀矿中,U238多而U235少(不及前者的百分之一)。依据实测的U235与U238含量的比值,就可以计算出地球地壳的年龄,从而推算出地球的年龄约为45亿年。

把这个方法应用于太阳。假如我们知道太阳早期的U235与U238的相对丰度(含量多少的意思),再根据现在的相对丰度,就可以推算出蜕变经过的时间,从而知道太阳的年龄(约为50亿年)。

那么,质量同太阳一样大小(或差不多一样大)、光谱型又相近的恒星,它们的年龄也应跟太阳年龄差不多。研究表明,不同质量的恒星,它们的寿命相差甚远。

最古老的恒星的年龄约有200亿年了,而“年轻”的恒星只有100万至200万年。后者可以说是正在诞生的恒星,因为它们是在地球上有了高等动物——人类之后才逐渐形成的星体。

7.死后的恒星能复活吗

这个奇想是很有趣的。因为世间的生物死亡后是不会复活的,但无生命世界的恒星又是个什么情况呢?所以有人提出了这个问题。

从恒星的物质构成来看,绝大多数是氢与氦,此外,还有其他元素。但是按照化学元素的起源理论来看,宇宙的早期只有轻元素(氢),后来才有重元素(如铁、钙、镁)。重元素是由轻元素合成变化出来的。例如,太阳的内部正不断地把氢变成氦,而氦后来又变出锂、铍、硼等元素。这个过程是相当复杂的,这里只能粗略地叙述。

当原始太阳逐渐收缩时,内部温度会越来越高,而当温度高达500万K左右时,就会发生由4个氢原子核变为1个氦原子核的热核反应。也就是说,开始有了氦这个元素。其后太阳继续收缩,内部温度继续增高,当核心区的温度达到1亿K左右时,2个氦核会合成为铍8(数字为原子量),同时铍8又会分裂为2个氦核。在合成与分裂中,总会有少量的铍8存在,其中一部分会俘获氦4而产生碳12。

有了碳12后,它可能进一步俘获氦核而形成氧16、氖20和镁20。

当氦核大部分用完时,核心区可能再次收缩而升温。这样,在高温条件下,碳、氧和氖核相互作用而形成硅族元素,最后形成铁。由于铁是最稳定的元素,所以核反应到此就结束了。

早期的恒星上,应当只含有氢、氦,以及铁族重元素。但是,我们的太阳上,还含有比铁更重的元素。这又是怎么回事呢?

恒星是不断演化的。有的星长到“红巨星”阶段时,其中少量的铁就会依次俘获中子而生成从铁到铅和铋这样的元素。而在晚期的超新星大爆炸中,又会生成更重的元素,以至比铀还要重的元素。

第一代恒星不断地向空间发射微粒(质子、电子与中子),而在超新星爆炸中,又将恒星内部的各种元素抛射入空间。这样,在空间的弥漫物质中就含有第一代恒星的遗迹。后来,弥漫物质又凝聚成新一代的恒星。那么,它就会包含有更多的重元素。

由此看来,我们的太阳已是第二代或第三代的恒星了。

总之,一个恒星瓦解死亡后,它的物质的一部分可能重新组成新的恒星。用一句风趣的话来说,是恒星“死而复生”了。但这是在更高的层次上,或者说是物质更复杂的恒星,而不是一颗恒星真的“复活”了。

四、不见水流的银河

1.银色的河:一个巨大的恒星系统

我们所看到的银河,只是银河系在天球上的投影。那么,银河系是什么呢?银河系是一个巨大的恒星系统,它是由大约1400亿颗恒星和大量的星际物质组成的庞大的物质体系。我们所在的太阳系本身就是银河系中的一员,所以我们是看不到银河系全貌的。但我们可以通过计算,分析银河系的结构和形状。第一个做这项工作的是英籍德国天文学家赫歇耳,他计算了若干天区内的恒星数目,进行统计研究后,于1785年绘制了最早的银河系结构图。

今天我们知道的银河系总体结构大致是这样的:

银河系的主体像个铁饼,叫“银盘”,直径约10万光年;银盘的中心平面叫“银道面”;银盘中间鼓出来的一大块,叫“核球”;核球中间有一个特别密集的区域,它是银河系的中心,叫“银心”。银心直径大约是5光年,这里是银河系中最“秘密”的区域,也是恒星高度密集的区域,它的质量相当于1000万个太阳质量。

围绕银心从银盘内甩出了4条“旋臂”,我们人类所在的太阳系就处在其中一条旋臂上。

目前,银河系内已经发现的旋臂有:英仙臂、猎户臂、人马臂,还有距银心较近的所谓3000秒差距臂,太阳就在猎户臂的内侧。通常,旋臂内的物质密度比臂间约高出10倍。在旋臂内恒星约占一半质量,剩下的一半物质是气体和尘埃。旋臂的典型厚度只有150秒差距,由于旋臂中多有亮星,照片上的旋涡结构是非常明显的,因此银河系和有类似结构的星系都称为旋涡星系。

同类推荐
  • 鸟与昆虫

    鸟与昆虫

    本书分上下两篇分别介绍了常见的鸟与昆虫。主要内容包括:留住大雁;天鹅仙女;“爱情的象征”;导航鸟;神秘的鹤;稀世珍鸟;亚洲“鸵鸟”等。
  • 奇异的泉水(谷臻小简·AI导读版)

    奇异的泉水(谷臻小简·AI导读版)

    从认识自然、利用自然、遵循自然规律出发,以五个圈层构造及其互相之间关系的地理知识和发展动向为基准,从中遴选出具有科学性、知识性、应用性、趣味性、前瞻性、充满新世纪气息的知识亮点,介绍好动多谜的地球、水是生命的源泉等内容,藉此向大众普及地理知识,提高地理知识水平。
  • 一本书掌握中国地理

    一本书掌握中国地理

    这是一本浓缩中国地理知识精粹的储备手册。此书不但开阔视野,又可以丰富人的生活情趣。所以说,它既是一本知识储备辞典,又是生活之余的实用佳品。作者根据丰富的地理知识和史料,编撰成这本集知识性、趣味性、科学性为一体的地理书籍。其内容涵盖历法日历、名山秀岳、高原盆地、平原丘陵、岛屿半岛、河流湖泊、瀑布泉地、沙漠森林、草原湿地、峡谷洞穴、地址公园、自然保护区、特色地貌、考古发现、中华奇景、历史文化名城、各省、自治区、直辖市简介等方方面面。让你轻松阅读浩博地理,从而丰富知识,开拓视野。
  • 五彩缤纷的光(探究式科普丛书)

    五彩缤纷的光(探究式科普丛书)

    本书内容包括:光的形成、本质、速度、介质以及光在层状分布等非均匀介质中的传播,光的运用及光电反应等。
  • 地震应急防护手册

    地震应急防护手册

    《地震应急防护手册》以通俗易懂的语言,简明扼要地介绍了地震的相关知识,重点包括发生地震时如何避险、逃生及救助,震后的防疫、心理重建等。《地震应急防护手册》基本上以问答的形式呈现,强调实用性、普及性。
热门推荐
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 棠黎

    棠黎

    假丧尸真鬼畜小白兔×真深谙世事假救世主“这…这是给我的吗?”八岁却异常瘦弱的女孩看着眼前的大哥哥抿嘴嗯了两声,她愣了愣,然后她弯了弯眉眼竟朝眼前人笑了起来,她喜欢他,她想问他愿不愿意做她的大哥哥,他是第二个给她糖的人。
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 血脉基因主宰

    血脉基因主宰

    基因的本质就是信息!以信息为基本,蛋白质为手段,成就改变宇宙的生命。基因的本能就是侵蚀!大地,深海,天空,乃至真空宇宙,基因的造物无处不在,它们是单一物质世界唯一的色彩。基因的渴望就是永生!生命繁衍生息,生死交替,唯有基因永生不灭!那么基因的终点是什么?一即是全,全即是一!
  • 栀子花离不开木

    栀子花离不开木

    兜兜转转,多年来的情感,终于,得到了结果。
  • 破解五小姨死亡之谜

    破解五小姨死亡之谜

    被誉为“五朵金花”之一的五小姨齐祖昆在“文革”期间不明不白的离奇死亡,她的死成为整个家族讳莫如深的禁区。作为70后出生学医的“我”,对五小姨的死充满了疑惑与好奇,在长达多年的走访与调查后,“我”一层层揭开了五小姨死亡的谜团,结果谜底却令家人们难以置信……
  • 从零开始读懂领导学

    从零开始读懂领导学

    生活中大多数的成功者都是各行各业中担当重任的人,他们独特而又迷人,可以兢兢业业又能一呼百应。他们也许没有过人的技术,也许没有庞大的资源,但他们有着神奇的令所有人为之倾倒、让所有人愿意追随的魅力、素质和能力。正是这种魅力、素质和能力,注定了他是一位成功者!
  • 湮坏的世界

    湮坏的世界

    大考前的一个月,一位美少女闯入废宅少年齐凌的生活,先是直接霸气表白,然后又是放线钓鱼,最后更是更改了少年的志愿,将文科改成了湮科。简介无力,前期无力,大概可以理解为面临着毁灭性灾难湮坏的半科技玄幻世界。主角废宅,感情方面很怂。(本书非单女主,双女主,另外有炒股角色,练笔作,食用需谨慎)
  • 代嫁太子路痴妃

    代嫁太子路痴妃

    莫名其妙吃个饭被打晕带上了花轿,要嫁的人还是冒名顶替的。事后某人换上可怜兮兮的表情,:“媳妇儿,你都把我看光光了,要负责。”某女无奈,明明被占便宜的是她,为什么他比她还委屈。
  • 重生之我可不是好惹的

    重生之我可不是好惹的

    传言黎家大小姐是一个丑八怪,脾气暴躁。都说传言不可信,这可不,黎家大小姐黎兮诺不仅不是一个丑八怪,脾气还挺好的(前提是你没惹她的情况下)说回来人家长得那叫倾国倾城,暗地里还是国际杀手集团的boss,隐藏于杀手排行榜中,就算是平日里轻轻的跺跺脚,整个杀手界也要抖上三天三夜的,对,就是这般神一样的存在的人却因为一场意外重生在一个高一女生身上,就看黎兮诺怎么咸鱼翻身。