登陆注册
3373600000026

第26章 数学大发现(3)

流木测速法

公元3世纪,我国三国时期的吴国,经常派船到东海和南海一带去。船只在茫茫的大海中航行,怎样知道航行的速度呢?他们的办法是:在船头把一块木板投入海中,然后从船头快速跑到船尾,记录下木板从船头到船尾的时间。船身的长度是知道的,比如船身长40米,除以木板从船头到达船尾的时间,比如10秒,就可以知道船速是4米/秒。

这样测量出来的速度对不对呢?如果海面风平浪静,船只又保持方向不变,速度不变,测量出来的速度是正确的。这样的运动叫做“匀速直线运动”。匀速直线运动的速度很好求,只要用距离s除以时间t,就得到物体在任一时刻的瞬时速度v,即v=st。

可是,风儿哪能不吹,海水哪能不动,船只在大海中航行,速度不可能是一成不变的,这时船的瞬时速度又怎样求呢?前面求得的4米/秒又算什么速度?为了解决这个问题,我们不妨先假定船是沿直线前进,是变速直线运动。在这种情况下,4米/秒虽然不是瞬时速度,可是还很有用,它代表船在十秒内的“平均速度”。

平均速度是什么意思呢?

比如说这学期,你们班的数学考过三次,你的成绩分别是84,85,92。为了对你这学期数学学习成绩有个总的了解,需要求出平均成绩:

(84+85+92)/3=87(分)。

尽管你在这三次考试中,没有一次得87分,但是,87分却表示了你这学期数学学习总的情况。平均速度的意思也是这样。

变速直线运动的平均速度也好求,我们可以先求出船在一段时间内的平均速度,然后再来想办法求瞬时速度。

瞬时速度

假设船由A出发,沿直线航行到了C,我们可以用靠拢的方法,来求船在B点的瞬时速度。

第一步,以B为起点,量出BD1(s1)=90米,记录船从B到D1所用时间t1=4秒。这样,我们可以求出船在BD1一段的平均速度v1:

v1=s1t1=904=22.5(米/秒)

第二步,缩短BD1的距离,取BD2(s2)=43米,记录船由B到D2的时间t2=2秒。这样,船在BD2一段的平均速度是v2:

v2=s2t2=433=21.5(米/秒)

BD2的距离比BD1小,平均速度v2,应该比平均速度v1更接近船在B点的瞬时速度。可以想像,随着距离s的不断缩短,求出来的平均速度v,应该越来越接近B点的瞬时速度。我们把距离缩短的过程和计算结果列成一个表:

距离(米)时间(秒)平均速度v(米/秒)90422.543221.5331.5721200.9620.8120.5820.67.840.3920.1从表中可以看出,随着距离的不断缩短,船的平均速度越来越接近20米/秒。这样,我们自然会推想20米/秒,就应该是船过B点的瞬时速度。

你看,用平均速度去逼近瞬时速度,多么像用圆内接正多边形面积去逼近圆面积啊!

我国古代数学家用割圆的方法,只能求出圆面积的近似值。上面,我们用缩短距离的方法,也只能求出瞬时速度的近似值。可是我们要求的并不是近似值,而是瞬时速度本身。

当然,我们可以想方设法,尽量缩短测量距离,使求出来的平均速度,尽量接近瞬时速度。但是,我们也必须清楚地看到,只要距离s不等于零,用st算出来的平均速度,总要和瞬时速度相差那么一点。干脆让s=0吧,s=0了,t也必然等于零,这时st就变成为00了。这可不成啊,老师再三强调零不能作分母。

你看,瞬时速度就在眼前,离我们越来越近了,可就是眼巴巴地摸不着它。

世上无难事,只怕有心人。开普勒和卡瓦利里勇于革新,创造出了求面积的新方法;牛顿在求瞬时速度上,也作了大胆的尝试。

牛顿割尾巴

牛顿认真分析了平均速度和瞬时速度的关系,提出了计算瞬时速度的新方法。下面,我们来介绍一下牛顿的新方法:

假设有一只船从0点出发,作变速直线运动,一秒钟走了一米,二秒钟走了四米,三秒钟走了九米,分析一下上面几个数,船走过的距离,正好等于时间的平方。就是1秒钟走了12米,2秒钟走了22米,3秒钟走了32米,t秒钟走了t2米。s=t2,反映了这只船的运动规律。

现在,假设我们要求第二秒末的瞬时速度。

船在第二秒末走到了B点,B点距离O点4米。根据前面求瞬时速度的办法,求第二秒末的瞬时速度,需要先求出平均速度。我们不妨让船由B点再向前走一小段时间。

因为我们给出的时间很小很小,小得与众不同了,我们在t的前面加上一个希腊字母△(读delta),写成△t,好和一般的时间有所区别。

在时间△t内,船又向前走了多少米呢?这可以算出来,船2秒钟走了22米,(2+△t)秒走了(2+△t)2米。它们的差(2+△t)2-22,就是△t秒内船走过的距离。这个距离也很小,我们用类似的记号△s来表示,得到△s=(2+△t)2-22=〔22+2×2×△t+(△t)2〕-22=4△t+(△t)2这样,在△t秒内的平均速度v应该是:

v=△s△t=4△t+(△t)2△t=4+△t(米/秒)牛顿心里很清楚,只要△t不等于零,平均速度v总要带着一个小尾巴——△t。拖个小尾巴的蝌蚪,如果不去掉尾巴,就变不成青蛙;带小尾巴的平均速度,如果不去掉小尾巴△t,也永远变不成瞬时速度。

牛顿采取果断措施,大胆令最后结果中的△t=0,割掉了平均速度的尾巴。他认为割掉了尾巴的平均速度,就应该是瞬时速度。

用牛顿的方法,我们要求船在第二秒末的瞬时速度,只要令4+△t中的△t=0,割掉尾巴,就得到了第二秒末的瞬时速度4米/秒。

牛顿用这种割尾巴的办法,求出了很多变速运动的瞬时速度,经过实践的检验,结果都是对的。瞬时速度这个可望而不可及的东西,终于被牛顿智慧的手给捉住了!

牛顿割尾巴的新方法,推动了数学和物理学的研究和发展。

主教的诬蔑

科学反对迷信,冲击神权,是教会的死对头。牛顿求瞬时速度的新方法,遭到了教会的敌视和反对。

1734年,英国出版了大主教贝克莱写的一本书,正题叫《分析学者》,副题叫《致不信神的数学家》,恶毒攻击牛顿发明的新方法。

贝克莱说,牛顿在求瞬时速度的过程中,首先用△t除等式两边。因为数学上规定零不能作除数,所以作为除数的△t不能等于零;可是牛顿最后又采取割尾巴的方法,令△t等于零。这样,△t一会儿是零,一会儿又不是零,这不是自相矛盾吗?△t既然代表时间,它应该是一个数量。这个忽儿是零,忽儿又不是零,虚无缥缈、飘泊不定的数量△t,不正是我们教会里所说的鬼魂吗!不过它不是消失了肉体的人的鬼魂,而是消失了数量的量的鬼魂。

贝克莱对牛顿的攻击,完全是为了维护教会的神权统治。他说的什么“量的鬼魂”,纯粹是胡言乱语。但是,贝克莱却提出了一个值得重视的问题:△t到底是不是零?

前面讲到,开普勒把圆分成无穷多个小扇形,他说不清楚每个小扇形的面积到底是多小;卡瓦利里把面积看成是无穷多条线段的和,他也从未解释过,为什么没有宽度的线段能组成面积。现在,牛顿求瞬时速度,他也说不清楚△t到底是不是零。

这些说不清楚的问题,后来终于说清楚了,这就是极限思想的建立。

极限的奥秘

什么是极限?极限难懂吗?其实,我们在小学学算术的时候就认识极限,和它打过交道,只不过那时没有用极限来称呼它罢了。

从分数谈起

我们很熟悉分数。在分数化小数的时候,我们常常会碰到一类没完没了的小数。

你看,化13为小数,它等于0.333…,是一个无限循环小数。

你再看13+13+13=0.333…+0.333…+0.333…左端相加等于1,右端相加等于0.999…所以1=0.999…这个等式对吗?你是否觉得0.999…应该比1小一点点才对呢?可是这里划的是等号,表示0.999…=1这就是极限问题。

要是把13=0.333…两边同乘以6,就得到

2=1.999…

看起来,1.999…好像也应该比2小一点点才对,可是这里划的也是等号,表示两边一星半点也不差。

这到底是怎么回事呢?

在小学里,我们还学过无限循环小数化分数:

0.7…=0.777…=79

0.14…=0.141414…=1499

0.132…=0.132132132…=132999

0.21547…=0.215474747…=0.215+4799000为什么在循环节下面写上几个9,就可以把循环小数化成为分数呢?这也是极限问题。

极限并不难懂,只要动脑筋多想想,是完全可以领会的。

惠施的名言

古希腊有一位诡辩家叫芝诺,我国古代战国时期,也有过一位精于辩论的有名人物叫惠施。惠施很有学问,据说他写的书要装好几大车。

惠施说:“一尺之棰,日取其半,万世不竭。”意思是说一根一尺长的棍,每天都把它断为两半,取走其中一半,千秋万代也取不完。

你看,第一天取走12尺,剩下12尺;第二天取走12尺的12,剩下14尺。这样继续分下去,剩下来的棍是18尺,116尺,132尺……虽然越分越短,可就是分不完,也取不完。

由分棍问题中,我们得到了一串有顺序的数:

1,12,14,18……

我们把这一串有顺序的数叫做“数列”,把其中每个数叫做数列的“项”。比如这个数列的第一项是1,第二项是12,第五项是116。

数列的种类

数列的种类很多。

数列1,12,14,18,…有无穷多项,是一个无穷数列。它的特点是越变数值越小,越变越靠近零,近到要多近有多近。

数列0.9,0.99,0.999,…也是一个无穷数列。它的特点是数值越变越大,越变越靠近1,近到要多近有多近。

数列1.9,2.01,1.999,2.0001,…也是一个无穷数列。它的特点是数值一会儿大,一会儿小,总的变化趋势是越变越靠近2,近到要多近有多近。

数列1,1,1,1,…是个无穷数列,各项都等于1,是一个常数列。

数列4,7,-1,53,-29,-0.05是一个有穷数列,一共有六项。它的变化杂乱无章,看不出什么规律来。

我们应该把注意力集中在前面三种无穷数列上。它们的共同特点是越变越靠近某个固定的数。认真研究一下它们的变化规律,我们会发现用“靠近”这个词,来形容它们与某一个固定数的关系还不够确切。比如数列0.9,0.99,0.999,…与1的关系,已经靠近到了这样一种程度,这个数列充分靠后的项,与1近到了“你要多近有多近”,“你说多近,可以近到比你说的还近”。

杂技钻圈

你看过杂技钻圈吗?舞台上立着几个直径很小的圈,演员们个个轻巧灵活,像猫一样在几个圈之间钻来钻去。

下面,我们来看一个数学杂技钻圈,“演员”是无穷数列0.9,0.99,0.999,…在数轴上以1为圆心,画几个同心圆,这就是一个套一个的小圈。

从图可以看到,数列的第一项0.9,还在所有圈的外面;第二项0.99,就钻进到第三个圈里面去了;第三项0.999,钻到第四个圈里面去了……数列的这个“演员”,比杂技演员的技术还要高超。杂技演员钻的圈不能无限制的小,比如直径比头还小的圈,就说什么也钻不进去了。但是,数列的这个“演员”可不论那一套,不管圈的直径有多小,它都能照样钻得进去。

半径为0.000000001的小圈,可够小的了,数列从第十项0.9999999999起,都能钻进到小圈里去。因为1-0.9999999999=0.0000000001<0.000000001,所以,0.9999999999应该在小圈里。你随便往小说好了,只要你能说出具体的数来,数列从某一项起就准能钻得进去。

但是,数列“演员”也有不如杂技演员的地方。杂技演员在表演钻圈时,既可以探身钻进去,也可以缩身退出来。数列“演员”0.9,0.99,0.999,…就不行了,它从某一项起,只要钻进以1为中心的小圈里,就再也不能退出来了。

对杂技演员来说,不管你把圈放在什么地方,放在北京还是上海,放在中国还是外国,他们都可以同样表演。数列“演员”0.9,0.99,0.999,…就不成了,它只会钻以1为中心的各种小圈。要是你把圈挪动一下,比如把中心挪到2,那它只能看着放在近旁的小圈,望圈叹息,钻不进去。因为数列0.9,0.99,0.999,…只能越来越靠近1,不能超过1,所以就钻不进以2为中心、半径小于1的圈了。

根据同样的道理,数列1,12,14,18,…可以钻进以0为中心的同心小圆里;数列1.9,2.01,1.999,2.0001,…可以钻进以2为中心的同心小圆里。

这三位数列“演员”,虽然钻圈的本领一样高强,但是它们的钻法各异,自成一派。

你看,数列0.9,0.99,0.999,…总是从左往右钻圈;数列1,12,14,18,…总是从右往左钻圈;数列1.9,2.01,1.999,2.0001,…总是一左一右跳跃着钻圈。

同类推荐
  • 复活的古城(下)

    复活的古城(下)

    在我们生活的这个世界上,沧桑的岁月冲逝了多少陈年旧事,历史的尘埃淹没了多少远古文明,厚重的黄土尘封了多少悠久文化,古城遗迹中又隐藏了多少千古秘密,没有人能说得清楚。凭着考古学者手中的铁铲,人们试图破解历史的密码。
  • 玩偶屋:知道这些就够了

    玩偶屋:知道这些就够了

    谁没在童年时幻想得到一座玩偶屋呢?如今机会来了,玩偶屋:知道这些就够了!作者戴尔·沃勒在圣路易斯长大,现居匹兹堡。他曾在海军服役,目前是一名核能工程师,写作是他的兼职工作之一。他自2013年开始自出版创作,至今已有百本涉及人文社科领域各类话题的作品与读者见面。
  • 数理化之谜

    数理化之谜

    学习中也是乐趣多多,趣味无穷。当你小时候仰着头向你的父母询问着这个,那个“为什么”时,那也是一种学习,而这种学习是否带给你了许多求知的满足感呢?同时你是否会头疼于这种学习呢?你可以好好回忆一下这些经历,再作出回答。实际上,数学、物理、化学并非你所想的那么枯燥无味。除了一大堆演算以外,它里面也包含着无穷的神奇。本辑所辑的便是这些令人费解的神奇现象。若能通过此书的阅读激发起同学们的学习热情,我们便是欣慰之至了。愿学生朋友们能早日遨游在科学的海洋里。
  • 人人都能做个发明家

    人人都能做个发明家

    这本书将带给你成为发明家/创新者的灵感,你将会成为一个经常且主动有所创新的人,发掘你的思维潜力,把新奇的点子变成可以实现的利润。多年来作者就发明、商标设计、品牌创立以及从销售和营销角度利用知识产权等诸多方面做了大量演讲、著述、广播访谈等。本书是作者应多年来众多听众、读者以及客户的要求而撰写的。不断有人向作者反馈,他的方式不仅有趣,易于理解,且行之有效,几乎任何人都可以付诸实践。本书内容具有国际性,因为知识产权的一般原则适用于全世界的任何地区。不过,也不排除某些地区会有例外情况。
  • 神奇动物科学美图大观(青少年神奇世界科学图文丛书)

    神奇动物科学美图大观(青少年神奇世界科学图文丛书)

    《神奇动物科学美图大观(青少年神奇世界科学图文丛书)》针对广大读者的好奇心理和探索心理,全面编撰了世界上存在的各种奥秘未解现象和新探索发展,具有很强的系统性、知识性和神秘性,能够启迪读者思考、增长知识和开阔视野,能够激发读者关心世界和热爱科学,能够培养读者的探索和创新精神。
热门推荐
  • 蚀骨罪爱:公爵夫人道晚安

    蚀骨罪爱:公爵夫人道晚安

    她,身份被换,从千金小姐沦落成了杀人犯。四年后,她走出大牢却落入他的陷阱,百般折磨千般羞辱。而他,血统尊贵高高在上,最终却栽在了一个万人唾弃的坏女人手里,万般宠溺,甘之如饴。明知她对他毫无感情唯有算计,他还是说:“女人,嫁给我!”“凭什么?”她问。男人说道:“就凭你才是我的正牌未婚妻!”大婚消息传出,全城哗然,众人皆道:霍少眼瞎,蛇蝎都要!他一把将报纸撕了,冷然一笑:“我宠我的女人,关别人屁事?公爵夫人名至实归,这世上无人能替!”
  • 追妻无门:女boss不好惹

    追妻无门:女boss不好惹

    青涩蜕变,如今她是能独当一面的女boss,爱了冷泽聿七年,也同样花了七年时间去忘记他。以为是陌路,他突然向他表白,扬言要娶她,她只当他是脑子抽风,他的殷勤她也全都无视。他帮她查她父母的死因,赶走身边情敌,解释当初拒绝她的告别,和故意对她冷漠都是无奈之举。突然爆出她父母的死居然和冷家有丝毫联系,还莫名跳出个公爵未婚夫,扬言要与她履行婚约。峰回路转,破镜还能重圆吗? PS:我又开新文了,每逢假期必书荒,新文《有你的世界遇到爱》,喜欢我的文的朋友可以来看看,这是重生类现言,对这个题材感兴趣的一定要收藏起来。
  • 北大的源头在哪里?

    北大的源头在哪里?

    北京大学的历史源头在哪里?其思想轨迹大体如下:(一)1918、1925年,蔡元培校长两次讲到:中国古代太学是近代新北大的“高曾祖”;(二)1925年蒋梦麟代校长判定:本校由国子监改为京师大学堂;(三)1948年胡适校长提出:北京大学是历代“太学”的正式继承者;(四)1964年前后,陆平校长提出:继承太学、学习苏联、参考英美是北大三大办学方针;(五)20世纪60年代和1982年,冯友兰讲:北大校史应从汉朝太学算起;(六)1987年,任继愈指出:北大源头应追溯到公元前124年汉武帝开办太学;(七)20世纪80、90年代,季羡林在北大九十周年校庆时提出:北大历史应从国子监创办算起,还可上溯到汉代太学;(八)1986、1988、1997年,萧超然反复讲:北大源头可直接上溯到代代相传的晋代国子监;(九)1998年,我提出:北大最初历史源头是公元前124年西汉太学创立,直接源头是古代北京地区的太学和公元947年辽南京太学、1287年元大都国子监。
  • 大唐顽主

    大唐顽主

    历经二百二十八年的大唐帝国在内忧外患中已变得风雨飘摇,盛世不再、国运衰微,被遗忘了十一年的皇长子于会昌六年重返长安,在一盘无形的棋局中逐渐开启了自己的帝王之路,拢士子、立军威、封佑王、夺储位、平藩镇、夺宦权、除党争、击回纥、镇吐蕃、收南诏,终将这残喘之中的晚唐再度推向了辉煌盛世......……欢迎各位兄弟姐妹进群品茶论道、煮酒谈史,Q群:527391828
  • 返回2006

    返回2006

    这是一个扑街作者重回2006年的故事,然后……他就不扑街了!但他还总是觉得写小说死路一条,总想再干点别的。然后他真的干了……
  • 梨花满地不待人

    梨花满地不待人

    ——相比你,我更喜欢希望。往事不必再提,往昔无需在意,从今往后,我乔南歌跟你毫无瓜葛。——那你怎么知道,我就会放弃呢
  • 论宠夫之道

    论宠夫之道

    第一招:杜绝一切外来吸引,实现夫君至上主义;第二招:日常互怼,促进夫妻关系的甜蜜发展;第三招:秉持着“贤妻良母”的信念,与夫君步入养生之道;第四招:生活服软,时常撒娇,直接进军夫君的小心脏!且看小娇妻如何攻略夫君,步入宠夫之道(本文属于女尊文,不喜勿喷)
  • 诗人生活

    诗人生活

    每首诗歌都倾注着我发自内心的情感。或许你能在其中找到自己,或许你有同样的体验,或许你会产生同样的情感。只要遵循内心,只要一路向前,只要每天都设立更好的目标,你就能头脑更聪明,内心更光明,心态更年轻。只要一切都全身心投入,就没有什么可以失去,只会有更多值得分享,只有会更多值得讲述。因为我们是人。
  • 鬼医宠妃

    鬼医宠妃

    十二月的夜晚,正是冷的时候。风呜呜地吼了起来,漫天飞舞的雪花渐渐的遮满了天空。漆黑的天空同雪海连成了一片,视野中就只剩下了黑蒙蒙的一片。吧嗒嗒的马车声由远及近,挂在马车顶端的一盏昏暗的小油灯在这漆黑的夜晚显得格外的明亮。这个马车足足有寻常两个马车那么大。一个女子侧躺在马车中,脸上蒙着一层薄纱,看不清容貌。身上盖着一条温暖的锦被,眯着眼睛,眉头微微蹙起……
  • 兽系总裁:我的老公是头狼

    兽系总裁:我的老公是头狼

    兽医系毕业的宁晞在路上被一只小白狼扑了个满怀,然后就成为了小白狼的专属奶妈。再后来,她就成为了小白狼的舅妈。这是一个女主很牛逼,但女主自己不知道,男主很牛逼,全世界都知道的故事。--情节虚构,请勿模仿